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e Let G be a finite graph, V/(G) its vertex set and E(G) its
edge set.

@ A spin configuration o on G is formally defined as
o= (ov)vev(c) € {-1, +13v(©).
@ Assign a Boltzmann measure on spin configurations by

Pi(o)oc [ P
{v,w}€E(G)

where (3 is called the inverse temperature.

e Partition function Zg(8) = >, I1{v.wice(q) efovow
@ The Boltzmann distribution can be reformulated as
]P)lé(o.) o p#HAvwIEE(G) : ov=0u}

@ In partiicular, 8 > 0 < v > 1. In this regime, the model is
called ferromagnetic, on which we concentrate in the sequel.
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Ising model on random (" dynamical”) lattices

@ Dates back to the work of Kazakov (1986) and Boulatov -
Kazakov (1987)

@ Some physics motivations: " Liouville Quantum Gravity
coupled with matter” (Polyakov 1981); quantum vs Euclidean
critical exponents via the KPZ-relation
(Knizhnik-Polyakov-Zamolodchikov 1988)

@ The above works already revealed a critical behavior different
to the pure gravity universality class

@ In the language of modern mathematics:
random planar maps coupled with an (annealed) Ising model

@ We want to find a critical behavior of the model which differs

from the "universality class of the Brownian map”, and see
how it reflects to the geometry
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Ising-triangulations

@ Add to each internal face (or vertex) a spin, either + or —.

@ Dobrushin boundary conditions: the spins outside the
boundary (resp. on the boundary) are fixed by a sequence of
the form +P—9 counterclockwise from the root.
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o Let Vol(t) be either the number of internal faces |F(t)| (spins
on faces) or the number of edges e(t) (spins on vertices).

@ Denote a spin configuration by o.

@ An edge is called monochromatic if it separates two faces
(resp. vertices) with the same spin. Let £(t, o) be the set of
monochromatic edges in (t, o).

X
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Partition functions

Partition function

zpg(t,v) = Z y|5(t,a)|tvol(f)’
(t,0)EBTHq

where

@ BT, q is the set of triangulations of the (p + g)-gon together
with an Ising-configuration on either interior faces or vertices
and a Dobrushin boundary condition +-P—9 .
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Generating function

Z(u,v;t,v) = Z zp.q(t,v) uPva
P,q=>0
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where T, U and Z are rational functions with explicit expressions.
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For every v > 1, the GF Z(u, v; t,v) is an algebraic function
having a rational parametrization

2 =T(S,v), tu=0HSv), tv=U0KSw)

A

Z(u,v;t,v)=2Z(H,K;S,v),

where T, U and Z are rational functions with explicit expressions.

This theorem indicates that our model in concern is "exactly
solvable”: various observables (eg. the free energy) can be
explicitly computed at least in some scaling limits with respect to
the perimeter from the expression of the generating function!
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Proof ingredients: peeling and functional equation for Z
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Summing over p, g, we obtain a linear equation for Z(u, v), and
interchanging the roles of p and g gives a linear system

A, Z(u,v
|:AVZEV, uﬂ (2)
= |:V 1:| |:U +t (A%Z(U) + (AZ()(U) + Zl(V)) AUZ(u) — AZO(U)Zl(V))
1 v] v+t (A2Z(v) + (AZ(v) + Z1(u) A Z(v) — AZy(v)Zy(u)) |
where
Zi(u) == WMZ(u,v),  DuZ(u,v) = M
azy() = 2L pz gy, - A =20 v ()

and so on.



By algebraic operations it turns out that Z; can be eliminated, and
thus we obtain a rational expression

Ri(u, v, Zo(u), Zo(v))

Z(u,v) = Ro(u, v, Zo(u), Zo(v)) e

where R;, R» are explicit polynomials.

@ Besides, we obtain a functional equation
P(ZO(U), u,zi, z3; t, V) =0, (4)

where P is an explicit polynomial and zx := z .
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where R;, R» are explicit polynomials.

@ Besides, we obtain a functional equation
P(ZO(U), u,zi, z3; t, V) =0, (4)

where P is an explicit polynomial and zx := z .

@ Luckily, we can obtain rational parametrizations for t, z; and
z3 by simple duality with the model in [Bernardi,
Bousquet-Melou [1]]. This can also be done directly from (4)
(more messy).

e Applying (computer) algebra we find an explicit RP for u and
Zy(u) for any given v > 1.
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v

@ Relying on the above result, we identify a critical line (v, 7(v))
for v > 1, and a unique critical point (v, tc) on the critical
line at which a phase transition occurs.

o t.(v) :=7(v) is simply the radius of convergence of z o(t, )
for a fixed v > 1.



Theorem [Chen, T., 2020] (spins on faces) ([2])

Forv > 1,
ap(v g —(a
Zpq(tc(v),v) ~ I'(p—(a())) uc(v)~9 g~ (@o+1) as q — oo;
b(v b —(a
ap(v) ~ r(_(oa)l)”C(V) Pp=(1t) a5 p — oo;

b(v) - c(q/p)

Zpq(te(v),v) ~ WUC(V)_(p+q)P_(a2+Z) as p,q — o0
while q/p € [Amin, Amax] where 0 < Amin < Amax < 00

The perimeter exponents are determined by the following table:

ve | (1ve) | {ve) | (ve,0)
ap | 3/2 | 4/3 3/2
ar | -1 | 1/3| 3/2
an 1/2 | 5/3 3
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Proof ideas

We want to understand the singularity structure of Z(u, v;v),
which boils down to understanding the one of the RP
(Z(H,K;S),U(H;S), U(K;S)) with v = D(S). This involves:

e Identifying the singularity uc(v) as an image of a critical point
Hc(S) of U, which defines a conformal bijection between the
domains of convergences of Z and Z around the origin,
respectively.

@ Showing that uc(v) is the unique dominant singularity of Z,
which in particular involves showing that (H.(S), Hc(S)) is
the only possible pole of Z which is mapped to oD(0, uc)?
under the aforementioned conformal bijection.

@ Deducing that Z is holomorphic in a product of A-domains,
which roughly means that it is amenable for transfer theorems
of analytic combinatorics (see the book of Flajolet and
Sedgewick).



A "geometric” reminder

color code:
Il =spin+
=spin-

root corner




Boltzmann distribution

Definition

The Boltzmann Ising-triangulation
of the (p, g)-gon is a random
variable having the law

Vol(t),,E(t,0)
]P;V (t, 0_) — tC(V) v ,
- Zpq(te(v), V)

(t,0) € BTp,q.
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Boltzmann distribution

Definition

The Boltzmann Ising-triangulation
of the (p, g)-gon is a random
variable having the law
C(V)Vol(t)yg(t,a)

Zpq(te(v),v)

v t
]P’Mq(t, o) =

(t,0) € BTp,q.

)

In the previous example,
|F(t)| =19,
|E(t,0)| = 18 and

tC(V)lgllls

Poalto) = 2 @) 0)



Definition

The local distance between Ising triangulations t and t' is
doe(t, ) =27F with R =sup{r >0|B,(t) = B,(t)}

where B, (t), the ball of radius r in t, is the bicolored rooted map
formed by all the internal faces (triangles) of t having at least one
vertex at a distance strictly smaller than r from the root vertex.
The condition B,(t) = B,(t') requires the two rooted maps to have
the same coloring on the internal faces and the same boundary
conditions.




Local limits

Theorem [Chen, T., 2020] (spins on faces) ([2])

For every v > 1, there exist probability distributions P and Pg,
supported on infinite bicolored triangulations with a boundary such
that

2 (d) vy (d) v

Poa gm0 TP poes’ Poo
in distribution w.r.t. the local distance. In addition, for
0< N <1< )< oo, we have
(d) g q /
Pz,q W ]P)Zo Whl/e E S [)\ 7)\]
locally in distribution. The local limits are one-ended, except P%,
for v > v, which is two-ended.




Tutte's equation / peeling process

UORHEINY)

+ u~6p,06q)1 C= + 5‘,7,1(5(1,0 n

a+1

@ The above recursive equation defines a probability distribution
on 8 = {C*,C"} U {L}, L, R, Ry - k >0},

@ Can be seen as the distribution of the first peeling step S; of
a peeling process of (t,o) ~ P} .
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Peeling process

It is easy to verify that P7(S) := limgo0 P} ,(S) and

PZ(S) := limp00 PH(S) also define probability distributions
on S.

Iterate the one-step peeling to obtain ¢, and u,, the explored
and unexplored maps after n peeling steps, respectively (so
that ¢g just consists of the boundary of (t,0)).

To each unexplored map u,, associate the perimeter (P,, Q),
giving rise to the perimeter processes.

For p, g < 0o, define the perimeter variation process

(Xn, Yn) = (Pn — p, Qn — q), which can also be defined for
p,q = oo and turns out to be a random walk under P%_ .



(b) The peeling step S, 41 (c) ept1 and Uy



The phase transition can be also seen from the following simple
property, which defines an order parameter:

Po(" The finite boundary is swallowed in a single step”)

c(W)p? (v<we)
p—00 CP_l (V = Vc)

c(v) € (0,1) (v>vwe)

~



A glimpse of geometry; a phase transition

Figure: The local limits (p, ¢ — o0) in the high temperature and the low
temperature regimes.

(to)~P,

o

Figure: The two local limits at the critical temperature.



Interfaces at the critical temperature

) ®) ot

Figure: The unique infinite interface when the spins are on vertices.



Theorem [T., 2020] (spins on vertices) ([3])

Let v = v.. Then the interface lengths 1, q and 1, between the
marked boundary vertices p and p! (at the junctions of the + and -
boundaries) have the following scaling limits:

V>0, lim Ppq (urp,q > tp) :/ (1+s)"3(A+s)"/3ds
t

p,g—00

where p is an explicit constant and the limit is taken such that
q/p — X\ € (0,00). In particular, for A =1,

lim Ppg(1p,q > tp) = (L4 ut) 2.

p,g—00

Moreover,

. _ —4/3
vt >0, pImePp(np> tp) = (1 4 pt)~"/°.
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Interpretation

o Consider two independent v/3-LQG quantum disks with two
marked points and perimeters 1 + L and L + X, respectively,
and their conformal welding, as defined in [Ang, Holden, Sun
[31]-

o Sample L from the Lévy measure dm(u,v) = u~7"/3v="/3dudv
conditional on {(u,v):u=1+L, v=A+L, L>0}.

@ This gives the law of the gluing interface length L:

p(L > t) ;:/ (14 %) 73\ + x) .
t
o Similarly, the law P(L > t) := (1 4 ut)~*/3 is the law of the

interface length in the conformal welding of a quantum disk
with a thick quantum wedge.



A closely related work

Albenque, Ménard and Schaeffer [2] considered the set of
triangulations of the sphere of size n decorated with Ising model on
the vertices.

@ It is shown that for any fixed v > 0, the law P, of the random
triangulation converges weakly in the local topology when
n — oo.

@ The above local limit at the critical temperature is shown to
be a.s. recurrent.



Works in progress and future directions

@ Near-critical regime

@ Universality

@ More general boundary conditions; crossing probabilities
@ Scaling limits of perimeter and volume

@ Scaling limits of the interface with conformal structure (—
LQGHSLE), ..., full scaling limit of the model as a LQG
surface?
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Merci beaucoup!



