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Ising model on a graph

Let G be a finite graph, V (G ) its vertex set and E (G ) its
edge set.

A spin configuration σ on G is formally defined as
σ = (σv )v∈V (G) ∈ {−1,+1}V (G).

Assign a Boltzmann measure on spin configurations by

PβG (σ) ∝
∏

{v ,w}∈E(G)

eβσvσw

where β is called the inverse temperature.

Partition function ZG (β) =
∑

σ

∏
{v ,w}∈E(G) e

βσvσw

The Boltzmann distribution can be reformulated as
PνG (σ) ∝ ν#{{v ,w}∈E(G) : σv=σw}

In partiicular, β > 0 ⇔ ν > 1. In this regime, the model is
called ferromagnetic, on which we concentrate in the sequel.
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An example in 2d with a planar embedding
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Ising model on random (”dynamical”) lattices

Dates back to the work of Kazakov (1986) and Boulatov -
Kazakov (1987)

Some physics motivations: ”Liouville Quantum Gravity
coupled with matter” (Polyakov 1981); quantum vs Euclidean
critical exponents via the KPZ-relation
(Knizhnik-Polyakov-Zamolodchikov 1988)

The above works already revealed a critical behavior different
to the pure gravity universality class

In the language of modern mathematics:
random planar maps coupled with an (annealed) Ising model

We want to find a critical behavior of the model which differs
from the ”universality class of the Brownian map”, and see
how it reflects to the geometry
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Planar maps

A planar map is a connected multigraph properly embedded
on S2, modulo orientation preserving homeomorphisms of S2.

We distinguish an oriented edge (or corner) of the map which
we call the root

We also distinguish a face which the root is incident to and
call it the external face.

A rooted planar map t is a triangulation of the m-gon if all its
internal faces are triangles and the external face has degree m
and no pinch-points.
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Ising-triangulations

Add to each internal face (or vertex) a spin, either + or −.

Dobrushin boundary conditions: the spins outside the
boundary (resp. on the boundary) are fixed by a sequence of
the form +p−q counterclockwise from the root.

ρ

ρ†
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Let Vol(t) be either the number of internal faces |F(t)| (spins
on faces) or the number of edges e(t) (spins on vertices).

Denote a spin configuration by σ.

An edge is called monochromatic if it separates two faces
(resp. vertices) with the same spin. Let E(t, σ) be the set of
monochromatic edges in (t, σ).

(a) (b)

(t, σ) ∈ BT3,4
|F(t)| = 19ρ ρ +

+

+

--

-

-

|E(t, σ)| = 18
root corner

color code:
= spin +
=spin -
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Partition functions

Partition function

zp,q(t, ν) =
∑

(t,σ)∈BTp,q

ν|E(t,σ)|tVol(t),

where

BTp,q is the set of triangulations of the (p + q)-gon together
with an Ising-configuration on either interior faces or vertices
and a Dobrushin boundary condition +p−q .

Generating function

Z (u, v ; t, ν) =
∑

p,q≥0
zp,q(t, ν) upvq
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Theorem [Chen, T., 2020] (spins on faces) ([2])

For every ν > 1, the GF Z (u, v ; t, ν) is an algebraic function
having a rational parametrization

t2 = T̂ (S , ν), t · u = Û(H;S , ν), t · v = Û(K ; S , ν)

Z (u, v ; t, ν) = Ẑ (H,K ;S , ν) ,

where T̂ , Û and Ẑ are rational functions with explicit expressions.

This theorem indicates that our model in concern is ”exactly
solvable”: various observables (eg. the free energy) can be
explicitly computed at least in some scaling limits with respect to
the perimeter from the expression of the generating function!
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Proof ingredients: peeling and functional equation for Z
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zp+1,q = νt

(
zp+2,q +

∑

p1+p2=p

zp1+1,0 zp2+1,q +
∑

q1+q2=q

z1,q1 zp+1,q2 − zp+1,0 z1,q

)

+ t

(
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∑

p1+p2=p

zp1,1 zp2,q+1 +
∑

q1+q2=q

z0,q1+1 zp,q2+1 − zp,1 z0,q+1

)

+ ν δp,1 δq,0 + δp,0 δq,1 (1)
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Summing over p, q, we obtain a linear equation for Z (u, v), and
interchanging the roles of p and q gives a linear system

[
∆uZ (u, v)
∆vZ (v , u)

]
(2)

=

[
ν 1
1 ν

] [
u + t

(
∆2

uZ (u) + (∆Z0(u) + Z1(v)) ∆uZ (u)−∆Z0(u)Z1(v)
)

v + t
(
∆2

vZ (v) + (∆Z0(v) + Z1(u)) ∆vZ (v)−∆Z0(v)Z1(u)
)
]
,

where

Zk(u) := [vk ]Z (u, v), ∆uZ (u, v) =
Z (u, v)− Z0(v)

u
,

∆Z0(u) =
Z0(u)− 1

u
, ∆2

uZ (u, v) =
Z (u, v)− Z0(v)− uZ1(v)

u2

and so on.



By algebraic operations it turns out that Z1 can be eliminated, and
thus we obtain a rational expression

Z (u, v) =
R1(u, v ,Z0(u),Z0(v))

R2(u, v ,Z0(u),Z0(v))
. (3)

where R1, R2 are explicit polynomials.

Besides, we obtain a functional equation

P(Z0(u), u, z1, z3; t, ν) = 0, (4)

where P is an explicit polynomial and zk := zk,0.

Luckily, we can obtain rational parametrizations for t, z1 and
z3 by simple duality with the model in [Bernardi,
Bousquet-Melou [1]]. This can also be done directly from (4)
(more messy).

Applying (computer) algebra we find an explicit RP for u and
Z0(u) for any given ν > 1.
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Critical line

Proposition (Bernardi, Bousquet-Mélou [1])

There is a continuous decreasing function τ : (0,∞)→ (0,∞) for
which

[tn]z1,0(t, ν) ∼n→∞

{
c(ν)τ(ν)−nn−5/2 if ν 6= νc

c(νc)t−nc n−7/3 if ν = νc

where νc = 1 + 2
√

7 and tc = τ(νc) =
√
5
√

35−11
√
7

28·63/2 = 0.0131....

Relying on the above result, we identify a critical line (ν, τ(ν))
for ν > 1, and a unique critical point (νc , tc) on the critical
line at which a phase transition occurs.

tc(ν) := τ(ν) is simply the radius of convergence of z1,0(t, ν)
for a fixed ν > 1.
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Theorem [Chen, T., 2020] (spins on faces) ([2])

For ν > 1,

zp,q(tc(ν), ν) ∼ ap(ν)

Γ(−α0)
uc(ν)−q q−(α0+1) as q →∞;

ap(ν) ∼ b(ν)

Γ(−α1)
uc(ν)−pp−(α1+1) as p →∞;

zp,q(tc(ν), ν) ∼ b(ν) · c(q/p)

Γ(−α0)Γ(−α1)
uc(ν)−(p+q)p−(α2+2) as p, q →∞

while q/p ∈ [λmin, λmax] where 0 < λmin < λmax <∞.

The perimeter exponents are determined by the following table:

ν ∈ (1, νc) {νc} (νc ,∞)

α0 3/2 4/3 3/2

α1 −1 1/3 3/2

α2 1/2 5/3 3



Proof ideas

We want to understand the singularity structure of Z (u, v ; ν),
which boils down to understanding the one of the RP
(Ẑ (H,K ;S), Û(H;S), Û(K ; S)) with ν = ν̂(S). This involves:

Identifying the singularity uc(ν) as an image of a critical point
Hc(S) of Û, which defines a conformal bijection between the
domains of convergences of Z and Ẑ around the origin,
respectively.

Showing that uc(ν) is the unique dominant singularity of Z ,
which in particular involves showing that (Hc(S),Hc(S)) is
the only possible pole of Ẑ which is mapped to ∂D(0, uc)2

under the aforementioned conformal bijection.

Deducing that Z is holomorphic in a product of ∆-domains,
which roughly means that it is amenable for transfer theorems
of analytic combinatorics (see the book of Flajolet and
Sedgewick).
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A ”geometric” reminder
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Boltzmann distribution

Definition

The Boltzmann Ising-triangulation
of the (p, q)-gon is a random
variable having the law

Pνp,q(t, σ) =
tc(ν)Vol(t)νE(t,σ)

zp,q(tc(ν), ν)
,

(t, σ) ∈ BTp,q.

In the previous example,
|F(t)| = 19,

|E(t, σ)| = 18 and

Pνp,q(t, σ) =
tc(ν)19ν18

z3,4(tc(ν), ν)
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Definition

The local distance between Ising triangulations t and t′ is

dloc(t, t′) = 2−R with R = sup{r ≥ 0|Br (t) = Br (t′)}

where Br (t), the ball of radius r in t, is the bicolored rooted map
formed by all the internal faces (triangles) of t having at least one
vertex at a distance strictly smaller than r from the root vertex.
The condition Br (t) = Br (t′) requires the two rooted maps to have
the same coloring on the internal faces and the same boundary
conditions.



Local limits

Theorem [Chen, T., 2020] (spins on faces) ([2])

For every ν > 1, there exist probability distributions Pνp and Pν∞
supported on infinite bicolored triangulations with a boundary such
that

Pνp,q
(d)−−−→

q→∞
Pνp

(d)−−−→
p→∞

Pν∞

in distribution w.r.t. the local distance. In addition, for
0 < λ′ ≤ 1 ≤ λ <∞, we have

Pνp,q
(d)−−−−−→

p,q→∞
Pν∞ while

q

p
∈ [λ′, λ]

locally in distribution. The local limits are one-ended, except Pν∞
for ν > νc which is two-ended.



Tutte’s equation / peeling process
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The above recursive equation defines a probability distribution
on S = {C+, C-} ∪ {L+k , L-k , R+k , R-k : k ≥ 0}.
Can be seen as the distribution of the first peeling step S1 of
a peeling process of (t, σ) ∼ Pνp,q



Peeling process

It is easy to verify that Pνp(S) := limq→∞ Pνp,q(S) and
Pν∞(S) := limp→∞ Pνp(S) also define probability distributions
on S.

Iterate the one-step peeling to obtain en and un, the explored
and unexplored maps after n peeling steps, respectively (so
that e0 just consists of the boundary of (t, σ)).

To each unexplored map un, associate the perimeter (Pn,Qn),
giving rise to the perimeter processes.

For p, q <∞, define the perimeter variation process
(Xn,Yn) = (Pn − p,Qn − q), which can also be defined for
p, q =∞ and turns out to be a random walk under Pν∞ .
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The phase transition can be also seen from the following simple
property, which defines an order parameter:

Pp(”The finite boundary is swallowed in a single step”)

∼p→∞





c(ν)p−5/2 (ν < νc)

cp−1 (ν = νc)

c(ν) ∈ (0, 1) (ν > νc)

.

p



A glimpse of geometry; a phase transition

ρ ρ

ρ†

Figure: The local limits (p, q →∞) in the high temperature and the low
temperature regimes.

p

(t, σ) ∼ Pp

(a) (b)

(t, σ) ∼ P∞

Figure: The two local limits at the critical temperature.



Interfaces at the critical temperature

(a) (b)
ρ

ρ†

ρ ρ†

I

Figure: Spin cluster interfaces when the spins are on faces.

Figure: The unique infinite interface when the spins are on vertices.



Theorem [T., 2020] (spins on vertices) ([3])

Let ν = νc . Then the interface lengths ηp,q and ηp between the
marked boundary vertices ρ and ρ† (at the junctions of the + and -

boundaries) have the following scaling limits:

∀t > 0 , lim
p,q→∞

Pp,q (µηp,q > tp) =

∫ ∞

t
(1+s)−7/3(λ+s)−7/3ds

where µ is an explicit constant and the limit is taken such that
q/p → λ ∈ (0,∞). In particular, for λ = 1,

lim
p,q→∞

Pp,q (ηp,q > tp) = (1 + µt)−11/3.

Moreover,

∀t > 0 , lim
p→∞

Pp (ηp > tp) = (1 + µt)−4/3.



Interpretation

Consider two independent
√

3-LQG quantum disks with two
marked points and perimeters 1 + L and L + λ, respectively,
and their conformal welding, as defined in [Ang, Holden, Sun
[3]].

Sample L from the Lévy measure dm(u, v) = u−7/3v−7/3dudv
conditional on {(u, v) : u = 1 + L, v = λ+ L, L > 0}.
This gives the law of the gluing interface length L:

P(L > t) :=

∫ ∞

t
(1 + x)−7/3(λ+ x)−7/3dx .

Similarly, the law P(L̃ > t) := (1 + µt)−4/3 is the law of the
interface length in the conformal welding of a quantum disk
with a thick quantum wedge.
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A closely related work

Albenque, Ménard and Schaeffer [2] considered the set of
triangulations of the sphere of size n decorated with Ising model on
the vertices.

It is shown that for any fixed ν > 0, the law Pn of the random
triangulation converges weakly in the local topology when
n→∞.

The above local limit at the critical temperature is shown to
be a.s. recurrent.



Works in progress and future directions

Near-critical regime

Universality

More general boundary conditions; crossing probabilities

Scaling limits of perimeter and volume

Scaling limits of the interface with conformal structure (→
LQG+SLE), ..., full scaling limit of the model as a LQG
surface?
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Merci beaucoup!


