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Quasicrystals

Figure 1: HRTEM image of a natural Al71Ni25Fe5 Decagonite quasicrystal
with plane decagonal rotational symmetry [Bindi et al., 2015, Figure 5]. 3/32
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Aperiodic Tilings

Figure 2: The Penrose tiling has a pentagonal rotational symmetry.
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Gibbs Measures and Local Rules

Figure 3: Matching arrows on the edges of the rhombuses forces the Penrose tiling.
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Random Dimers With Local Rules

A Random Dimer Model
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Dimer Tilings

Figure 4: Tiling examples.
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Height Function

Figure 5: General weighted arrows. Figure 6: Relative heights of the vertices of a tile.
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Height Function

Figure 7: Height function on the vertices with α = β = γ = 1.
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Local Rules Through Forbidden Patterns

Figure 8: Forbidden patterns. Figure 9: Locally admissible tiling.
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Associated Gibbs Measure

Definition
Consider Λ a tileable, simply connected, compact domain,
and E(η) the number of forbidden patterns in a tiling η of Λ.

We define µΛ,β(η) :=
1

ZΛ,β exp (−β × E(η)) the Gibbs measure at inverse temperature β.

Can we control EΛ,β [ |H(x)| ], with H the height of a vertex x ∈ Λ?
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Random Dimers With Local Rules

Peierls Argument for Random Dimers
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Hexagonal Contours Induced by Forbidden Patterns

Figure 10: Rule violations can be decomposed into a family of cycles.
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Hexagonal Contours Induced by Forbidden Patterns

Figure 10: Rule violations can be decomposed into a family of cycles.
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Relative Height and Number of Cycles

Figure 11: The number of cycles linearly impacts the height difference.

We have |H− H0| ≤ 3T, with H0 the height without forbidden patterns,
and T the number of cycles around a vertex.
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Cycle Correction Decreases Energy

Figure 12: In both examples we correct the cycle around the small blue one.

If we obtain η′ by correcting the cycle γ from η, then E(η) = E (η′) + |γ|.
12/32
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Peierls Argument

Theorem

We have Eβ [T] ≤ exp
(

9e2β
2(eβ+2)2 ×

1
(eβ−2)2

)
− 1 < ∞ when β > ln(2).

Proof.
See Appendix 1.

It follows that |H− H0| stays bounded on average on a given vertex.

However, it is expected that |H− H0| isn’t bounded and takes arbitrarily high values.

Could we prove that H /∈ L1 when β is small-enough?
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Key Ingredients for the Peierls Argument

We need a good notion of contours, such that:

• We have a relation between contours and the height, e.g. H = O(T),
• We can injectively erase a contour while decreasing the energy,
e.g. E(η) ≥ E (η′) + O(|γ|).

Figure 13: Periodic discrete surface corresponding to the plane (2, 2, 1)⊥.
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Forbidden Patterns Won’t Define Cycles…

Figure 14: Forbidden patterns. Figure 15: Empirical choice of contours.

Amidst a worldwide plague, my internship ended on this roadblock.

15/32



Physical Motivation Random Dimers With Local Rules Wang Tiles with Bernoulli Noise Random Dimers with Holes Bibliography

…But What If Contours Were Thick?

Figure 16: Here, instead of cycles made of edges,

we define thick contours made of tiles.

16/32



Physical Motivation Random Dimers With Local Rules Wang Tiles with Bernoulli Noise Random Dimers with Holes Bibliography

…But What If Contours Were Thick?

Figure 16: Here, instead of cycles made of edges, we define thick contours made of tiles.
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Subshifts of Finite Type

Figure 17: Example of configuration,

without forbidden patterns.

• Grid Z2.
• Alphabet A = {◦,×}.

• Forbidden patterns F :

The SFT is the space ΩF ⊂ AZd of such configurations.

DenoteMF the σ-invariant measures on ΩF .
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Clair-Obscur Framework

• Inject A ↪→ Ã = A× {0, 1}.

• Identify F ∼= F̃ = F × {0}.

• Denote M̃B
F (ε) ⊂ MF̃ the measures

with B(ε)⊗Zd Bernoulli noise.

• The set M̃B
F (ε) is weak-* closed,

and
⋂
ε>0

M̃B
F (ε) = MF .

Figure 18: Configuration,

now with obscured cells.

Reminder (Weak-* Convergence)
We say that µn

∗→ µ when µn([w]) → µ([w]) for any finite pattern w.

18/32



Physical Motivation Random Dimers With Local Rules Wang Tiles with Bernoulli Noise Random Dimers with Holes Bibliography

Clair-Obscur Framework

• Inject A ↪→ Ã = A× {0, 1}.
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Besicovitch Distance
x

x|y y

Figure 19: Frequency of differences between x and y.

Finite Hamming distance:
d13×8(x,

y

) =

33

13×8

≈ 0.3

Hamming-Besicovitch pseudo-distance:
dH = lim sup

n→∞
dn×n

Besicovitch distance on σ-invariant measures:

dB(µ, ν) = inf
λ a coupling

∫
dH(x, y)dλ(x, y)
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Stability

The SFT ΩF is f-stable for dB on Bernoulli noises if:

∀ε > 0, sup
λ∈M̃B

F (ε)

dB (π∗
1 (λ),MF ) ≤ f(ε).

Theorem [Gayral and Sablik, 2021, Corollary 3.15]
Stability is conjugacy-invariant.

What kind of (in)stability results can we expect from typical SFTs?
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Wang Tiles with Bernoulli Noise

Stability of the Periodic Subshifts
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1D Classification of the Stability

Figure 20: The noisy configuration is at Hamming distance 1
2 of the clear ones.

Theorem [Gayral and Sablik, 2021, Theorem 4.8 and Theorem 4.9]
Consider ΩF a 1D SFT. Then ΩF is (linearly) stable on Bernoulli noises iff it is mixing.

Most notably, p-periodic SFTs (with p ≥ 2) are unstable.

21/32
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Periodic Tilings in Higher Dimensions

A SFT ΩF is (strongly) periodic if there exists an integer N such that
any configuration is invariant for any translation in (NZ)d.

Theorem [Gayral and Sablik, 2021, Theorem 5.7]
Consider ΩF a 2D+ periodic SFT.

Then ΩF is f-stable on Bernoulli noises, with linear speed f(ε) = 2Cdc(F)ε.
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Reconstruction Function
Lemma [Gayral and Sablik, 2021, Lemma 5.3]
Consider a 2D+ periodic SFT ΩF .

There exists c(F) ≥
⌈N
2
⌉
such that, for any connected cell window I ⊂ Zd,

if w ∈ AI+Bc is locally admissible, then w|I is globally admissible.

Figure 21: Here, the whole domain contains no forbidden pattern,
but only the blue zone is guaranteed to be the restriction of an actual configuration. 23/32
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Thickened Percolation

Consider ϕn(b)x = max
∥y−x∥∞≤n

by for b ∈ {0, 1}Zd .

Starting from a site percolation ν , we obtain the n-thickened percolation ϕ∗
n(ν).

Figure 22: Illustration of the mapping φ1.

Proposition [Gayral and Sablik, 2021, Proposition 5.6]
Consider I ⊂ Zd the random infinite component of the n-thickened B(ε)⊗Zd-percolation.

Then Cdn = 48(2n+ 1)d is such that P(0 /∈ I) ≤ Cdn × ε.
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The (Enhanced) Robinson Tiling

Figure 23: Tileset and hierarchical structure of the Robinson tiling,

with strengthened local rules.
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Reconstruction Function for the Enhanced Tiling

Proposition [Gayral and Sablik, 2021, Proposition 7.7]
For any scale N ≥ 2, the constant CN = 2N − 1 is such that
for any integer n and any clear locally admissible pattern w on Bn+CN ,
w|Bn is almost globally admissible, in the sense that up to a low-density grid,
w|Bn is made of well-aligned and well-oriented N-macro-tiles.

Figure 24: Family of well-aligned and well-oriented tiles.
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Density of the Grid

Figure 25: The density of the grid around N-macro-tiles goes to 0 as N→ ∞. 27/32
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Non-linear Polynomial Stability

Theorem [Gayral and Sablik, 2021, Proposition 7.8 and Theorem 7.9]

For any ε > 0, any scale N, and any measure µ = π∗
1 (λ) with λ ∈ M̃B

F (ε):

dB (µ,MF ) ≤ 96
(
2N+2 + 1

)2
ε+

1
2N−1 .

Hence, the SFT is f-stable with f(ε) = 48 3
√
6ε.
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Aperiodic Instability

Figure 26: Two-coloured Robinson structure.

Proposition [Gayral, 2021, Proposition 1]
The SFT ΩRB is unstable.

More precisely, for any ε > 0, we have µ ∈ MB
RB(ε) such that dB (µ,MRB) ≥ 1

8 .
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Undecidability

We can embed Turing machines space-time diagrams into the Robinson structure.

Theorem [Gayral, 2021, Corollary 1]
The problem of deciding whether the SFT ΩF is stable or not given the set of forbidden
patterns F is undecidable.
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What Happens to Dimers With the Besicovitch Distance?

Figure 27: Example of a Domino SFT configuration, with one forbidden pattern highlighted in blue.
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Appendix 1: Computations for the Peierls Argument

Theorem

We have Eβ [T] ≤ exp
(

9e2β
2(eβ+2)2 ×

1
(eβ−2)2

)
− 1 < ∞ when β > ln(2).

Proof.
We have:

P(T(u) ≥ k) ≤ 1
ZΛ,β

∑
u▹γ1▹···▹γk

∑
η compatible

e−βE(η)

≤
∑

u▹γ1▹···▹γk

k∏
i=1
e−β|γi| ×

(
1
Zβ

∑
η compatible

e−βE(η′)

)
≤

∑
u▹γ1▹···▹γk

k∏
i=1
e−β|γi|

≤ 1
k!

(∑
u▹γ

e−β|γ|

)k

.
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Theorem

We have Eβ [T] ≤ exp
(

9e2β
2(eβ+2)2 ×

1
(eβ−2)2

)
− 1 < ∞ when β > ln(2).

Proof.
Thus:

E[T(u)] ≤ exp

(∑
u▹γ

e−β|γ|

)
− 1 .

Notice that:

∑
0▹γ

e−β|γ| ≤
∑
k≥6
k∈2N

3
8k× 3× 2k−1 × e−βk =

9
8
∑
l≥3

l
(
4
e2β

)l
.

This series is convergent as soon as 4
e2β < 1, i.e. β > ln(2), and the bound follows.
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