Tae DSKP RECURRENCE:
COMBINATORIAL ASPECTS AND GEOMETRIC SYSTEMS

Béatrice de Tiliere
University Paris-Dauphine

joint works with

Niklas Affolter (TU Berlin) & Paul Melotti (U. Paris Saclay)

Rencontre d’automne, ANR DIMERS
October 18, 2022



OUTLINE

The dSKP equation + recurrence

Combinatorial solution I

Geometric applications

Devron property + combinatorial solution II

Geometric applications

u]
8]
I
i
it




THE DISCRETE SCHWARZIAN KADOMTSEV-PETVIASHVILI
EQUATION (DSKP)

a—b c— f d—e
b-c f d e—a

> Discrete version of Schwarzian KP equation, related to soliton
theory [Bogdanov, Konopelchenko 98],

> Discrete version of quasi-conformal maps [Konopelchenko,
Schief "01],

> Many geometric systems.



MENELAUS THEOREM

THEOREM (MENELAUS (~100 AD))

Let ABC be a triangle, and let D be a point on (BC), E on (AC) and F
on (AB).

Then D, E, F are on a line iff, in complex coordinates,

a—-f b-d c-—e
X X
f-b d-c e-a

= -1




MIQUEL’S THEOREM

THEOREM (MIQUEL '1838)
Given the four external
circles, the points A, B,C, D
are concyclic iff the points
A',B,C',D are.

THEOREM (AFFOLTER 721,
KenYoNn-LLAM-RAMASSAMY-
Russkiku "22)

If the above holds, the circle
centers satisfy

4
u—uy uz—u us — Uy
X X =-1L

ui—us u —us UuUg—U

~» Related to t-realizations of the dimer model [KLRR,
Chelkak-Laslier-Russkikh "20], Miquel's dynamics on the dimer model
[Ramassamy 20; KLLRR].



CLASSIFICATION OF CONSISTENT EQU. [Adler-Bobenko-Suris ‘03, °11]

F(a,b,c,d)=0

An equation on quads, F(a,b,c,d) = 0, is said to be consistent if it
propagates uniquely on a cube:

<

~» Analogous definition for equations on cubes, and on octahedra.



CLASSIFICATION OF CONSISTENT EQUATIONS

THEOREM (ADLER-BOBENKO-SURIS '1T1)

Up to admissible transformations, the consistent equations on
octahedra are:

bd + ce
X1:f= .
.ficbdfbdafcbe—cde+bde+cae
X2 ] = bd + ca — ba — da — ce + ae
¢cb —ca+da — de
X3 f= 5
—e
_fibda+cbefbdefcae
Xl = a(b—e)
bda + cbe — cae
Xs i f=—— ——
a
o y is dKP.
o yo is dSKP.

o xs3,X4,Y5 can be obtained from yg by taking appropriate limits



THE DSKP RECURRENCE

> Octahedral-tetrahedral lattice: £ = {(i,], k) € AR i+j+ke2Z}.

> A function x : .Z — C satisfies the dSKP recurrence if

3 - - - p—
(x—c Xeg)(X e Xe3)(x e _Xel) _

(XCZ - X—61)(X63 _X—eg)(xel _X—eg) B

-1,

3

i_> and the relation is

where x4(p) := x(p + q) for every q € {¢;}
evaluated at any p € Z3\ .Z.



THE DSKP RECURRENCE

> Consider initial conditions a = (a;)jezz at levels 0 and 1, i.e., at
vertices (i, J, [i + jl2) jezz of Z.

x(i, j, k) »

> What is the value of x(i,j, k), k > 1, in terms of the initial
conditions?



DSKP - Sorution 1

THEOREM (AFFOLTER-DT-MELOTTI '22)

Letx: ¥ — Cbea function satisfying the dSKP recurrence with initial
conditions a = (a; ) Jj)ezz at vertices (@ J, i+ jl2) Jjezz- Then, for all
points (i,j,k) € £ such that k > 1,

x(i, j, k) = Y(Ag-1laijl, a),
where

Zg=(Akalaijl,a™ @)

Y(Ak_l[ai,j],a) = C(Ak—l[ai,j]) Z-—(Ar_1lai ], a, @) :
m — i,j tRad]




DSKP - SorutioN I: AzTEC pIAMOND Ag[a; ]

> Aj-ilaij]: Aztec diamond of size k —1 centered at a;;.

ajq

a0,3 | 4,3 | a3

a-12| aoz2 a2 a2 a2

a-g1 | a-11| ao1 | a1 | az1 | asi| aa

a-10| 40,0 aLo a,0 as,0o

ao-1| ai-1| as-i

ap-2

Example: Aztec diamond Asz[a;;] used to compute x(1,1,4).

~» Aztec diamond with face weights.



DSKP - SOLUTION I: PARTITION FUNCTION Z3=(A, a, ¢)

S
» Oriented dimer configuration M of Aztec diamond A:
unoriented version M is a dimer configuration, i.e., subset of
edges s.t. every vertex is incident to exactly one edge of M ~» M.

L |




DSKP - SOLUTION I: PARTITION FUNCTION Z3=(A, a, ¢)

> Kasteleyn orientation ¢ € {—1,1}F: skew-symmetric function on E
such that, for every inner face f,

l_[ Pw,b) = -1

(w,b)edf




DSKP - SOLUTION I: PARTITION FUNCTION Z3=(A, a, ¢)

> Aztec diamond A with face weights (ar)fer.

— face f has weight ay




DSKP - SOLUTION I: PARTITION FUNCTION Z3=(A, a, ¢)

> Every oriented dimer edge has

> a Kasteleyn weight: ¢z
> a face weight on the right: asg

+1
5@

L |

|

> The partition function Zz=(A, a, ¢):

Zi=(A,a,0) = Z l_[ ¥z are)-

Me.7 2eM



DSKP - Sorution 1

THEOREM (AFFOLTER-DT-MELOTTI '22)

Letx: % — Cbea Jfunction satisfying the dSKP recurrence with initial
conditions a = (aj ) jezz at vertices (i, ], [i + jl2) jezz- Then, for all

points (i,j,k) € £ such that k > 1

B

Zzm(Aralagl,a™t, @)

x(i, j, k) = C(Ar-1lai;])

a0,3

Zm(Ak—l [ai,j]’ a, ‘P)

aia

a3

 — g

=: Y(Ag-1laijl, ).

a3

a-12| ao,2

a2

azg asg

a-21 !3—1,1 a0,1

apt

azy| as, aq1

a-1,0| 40,0

a0

az, as,0

ap,-

Example: Aztec diamond Az [aé]z'l_,lz]

ar—

ag 1

used to compute x(1,1,4).



DSKP - SoLuTiON I: IDEA OF PROOF [SPEYER 07]

> Show that for any bipartite planar G with face weights (as)ser,
the ratio of partition functions Y(G, a) is invariant when:

o an urban renewal is performed and weights satisfy dSKP

a at
T v . d ag-a; 32-4) ag—aq _ 1
ag a4 <—>ag aOa4 an a—ay a-a3 a1-ao =
£) ‘0]
as as

o a contraction/expansion of a degree 2 vertex

as as
ap ap

» Then, do an induction

Y(Ag-ilagjl, a) | | — - | | = - — [] xGj.k




PREVIOUS RESULTS OF THE SAME KIND

» dKP/Octahedron recurrence/Dodgson condensation: [Speyer ‘07]
~> dimer model

» Cube recurrence: [Caroll, Speyer '04] ~» cube groves

> Hexahedron recurrence: [Kenyon, Pemantle '16] ~» double dimer
model

» Kashaev’s recurrence: [Melotti 18] ~w» C%—loop model

All of the above solutions are Laurent polynomials in the initial data,
with coefficients equal to 1 in the first 2 cases [Fomin, Zelevinsky '02].



APPLICATION TO DISCRETE HOLOMORPHIC FUNCTIONS

A function z : 72 — € is discrete holomorphic [Bobenko-Pinkall "96]
if, for every quad of 72

Zij — Zinly  Ziljl T Zigel

Zislj ~ Zislj+l  Zij+l — Zij

The data of (z;))itjejo,1) is enough to determine all of z.




APPLICATION TO DISCRETE HOLOMORPHIC FUNCTIONS

A function z : Z2 - € is discrete holomorphic [Bobenko-Pinkall "96]

if, for every quad of 72

Zij = Zixlj  Zirlj+l ~ Zij+l

=-1L

Zivlj ~ Zislj+l  Zij+l — Zij

THEOREM (A-DT-M ’22)

For every (i,) € Z% such that

i+j > 2, there is an Aztec diamond
Aiyj_o with explicit weights

a = (Zk,0)k+te(0.1,2) Such that

zij = Y(Ajj-2,a).

243

:
;“.-2
.

232

Aztec diamond used for z4 ;.



APPLICATION TO PENTAGRAM MAP [SCHWARTZ Q2]



APPLICATION TO PENTAGRAM MAP [SCHWARTZ Q2]
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APPLICATION TO PENTAGRAM MAP
QY1

Uo

Oy

Vo
T(v)o T(v)

T(u)-y g Tw)
V)_
u_1 V_1 !

T(u)-o

T(v)-2 T(v)2

THEOREM (A-DT-M ’22)
Forallj>1andie€Z, there is an
Aztec diamond Aj-1 with explicit
weights a = (ug, T(w)e)k ccz such that

T'(u); = Y(Aj-1, ).

Remark: [Glick '11] has an explicit
expression using F-polynomials of
cluster algebras.

Example for T3(u)_i.



DEVRON PROPERTY

> Devron property [Glick '153]: for a birational integrable
dynamics T, if some data is singular for T7L, then there should
be an n € N such that it is singular for T".

> Singular data for backwards dSKP:

1. (m,m)-periodic + every p-th diagonal at height O is constant.
2. (m,m) + (m,—m)-periodic + diagonals at height O are constant +
rows at height 1 are translates of each other.

e Ctg iy
{au ‘df, r¢4n k. d,,
OBOHOHE



DEVRON PROPERTY

1. (m,m)-periodic + every p-th diagonal at height O is constant.

2. (m,m) + (m,—m)-periodic + diagonals at height O are constant +
rows at height 1 are translates of each other.

THEOREM (AFFOLTER-DT-MELOTTI '22)

Under assumptions 1, after mp — 2p + 1 iterations of the dSKP
recurrence, again every p diagonal is constant.

THEOREM (AFFOLTER-DT-MELOTTI "22)
Under assumptions 2, after m — 1 iterations of the dSKP recurrence, the
value is constant and equal to the shifted harmonic mean of the initial
data:
1S 1
Vi, j,m) € &, x(G,j,m)=d+ (n_1 > —)

daji—d



DSKP sorLuTioN IIl: COMPLEMENTARY TREES/FORESTS

» Consider Aztec diamond A, with two additional black vertices
{br, b}.
> From Ay construct the graph A} as follows.

*b b

by e b,

A complementary tree/forest of A} is a pair (T,F) of edge config. s.t.
e T is a spanning tree of A,: rooted at b,
e F is a spanning forest of A} rooted at b, b,
e TNF=0.

~> .7 set of complementary trees/forests of A;.
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bye by
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DSKP sorLuTioN IIl: COMPLEMENTARY TREES/FORESTS

THEOREM (AFFOLTER-DT-MELOTTI '22)

Consider Aztec diamond Ay with face weights a = (as)rer. For any
Kasteleyn orientation ¢,

Zim(Ak,a,0) = Z sgn(T, F) l_lafé'
(TsF)E’g écF

Moreover, there is a bijection between terms in the sum in the r.h.s. and

monomials of Zg=(Ax, a, ¢) in the a variables.

REMARK
Result in the spirit of [Speyer] [Caroll, Speyer] [Kenyon, Pemantle]
[Melotti] giving a combinatorial interpretation of monomials.



DSKP sorutioN II: IDEA OF PROOF

» Weighted adjacency matrix K(a) of Ag:

ifw~b

a —a
YweW, beB, K(@y,=14 ' "0 0w .
0 otherwise.

w
af(w,b) — afb,w

ProrositioN (A-pT-M)
For any Kasteleyn orientation ¢ of Ay, there exists e(p) € {-1,1} s.t.

Zzm(Ak, a,¢) = €(p) det(K(a)).



DSKP sorutioN II: IDEA OF PROOF

> Consider the matrix C(a),

- + if b bel to 0
VfeF, beBU), Clay, =2 b belonestodf,
0 otherwise.

ProrositioN (A-pT-M)

det(K(a)) = +det(C)* C()? C(a)®).



DSKP soLuTION II: IDEA OF PROOF + CONSEQUENCES
> The relation
Zgm(Ara,¢) = 2det(CY  CDP  C(a)?) @
+ extra work allows to prove compl. trees/forests representation.

> Relation (1) + extra work allows to prove the following.

THEOREM (A-DT-M ’22)
Let v € CF be a non-zero vector such that

(cw? c@?) v=o.

Let (vi)i.‘zo be the elements corresponding
to o. Then,

k .
Dizo AfVi
k.
i=0 Vi

Y(Ap,a) =

Both theorems + extra work = Devron properties.



APPLICATION TO P-NETS
Amapp:7% - € is a P-net [Bobenko-Pinkall 99] if,
1 1 1 1

Y (i, ) € 72, - + - = 0.
Pi+1j —Pij  Pij+1 = Pij  Pi-1j —Pij  Pij-1 = Pij

The data of (p;j)jefo,1) determines p.

THEOREM (GLICK ‘15, YAO '14)

Let m > 1, and let p be an m-periodic P-net such that, for all i € Z,
pio = 0. Then, if the following are well defined,

1 m—1 -1
VieZ, pim=|— -
Pi,n (mgpm)

that is the singularity repeats after m — 1 steps, and its value is the
harmonic mean of (p;1)-

~» We provide an alternative proof.



APPLICATION TO P-NETS

Amapp:7% - € is a P-net [Bobenko-Pinkall '99] if,

1 1 1 1
Y (i.)) € 77, - + -
Pi+1j = Pij  Pij+1—Pij Pi-1j —Pij  Pij-1 = Pij

= 0.

The data of (p;j)jefo,1) determines p.

aalys
Illustration. The black dot is at 0 and corresponds to p;o; the brown dots are

the values of p;;. Those are m-periodic with m = 3 (left), resp. m = 4
(center), resp. m =35 (right).




APPLICATION TO INTEGRABLE CROSS-RATIO MAPS

Let a,B:7Z — C\ {0}. An integrable cross-ratio map [Bobenko-Pinkall
'99] is a map z: 72 — C such that,

(Zij = Zin1 ) Zirrjn — Zij+1)

Y (i,)) € 72, =2
(Ziv1j — Zinje)(Zijr1 — Zij) P

THEOREM (A-DT-M ’22)
Let m > 1, and let Z be an m-periodic integrable cross-ratio map such
that Z;p = 0 for all i € 2Z. Then, if the following are well defined,

Zm_l (¢ —Be)

Vie2Z, Zi,Zm—l
Zf 0 Zz{+11( ¢ =Bt 1)

where Z is z rotated by —45°.



CONSEQUENCES FOR DISCRETE HOLOMORPHIC FUNCTIONS

> Specifying a, = -1, By = 1, we recover a theorem of [Yao '14]
when m is odd.

> When m is even, using relation to P-nets, we prove that the
singularity occurs one step earlier.

Propagation of discrete holomorphic functions. Left: 3-periodic case. Center
and right: 4-periodic case.



APPLICATION TO PENTAGRAM MAP

THEOREM [SCHWARTZ 07, GLICK 14, YAO '14]

If (vi,...,v9y) is an axis-aligned polygon, then if well-defined,
T (v, ...,vay) is reduced to a point, which is the center of mass of
(V15 .-+, Vom).

~» We provide an alternative proof.



APPLICATION TO PENTAGRAM MAP

THEOREM [A-DT-M ’22]
If (vi,...,voy) is half-axis-aligned, then T2 4wy, ..., Vo) is singular
(that is, T?"3(vy, ..., vom) is undefined).




CONCLUSION

System Initial condition | Steps Citations
Miquel m-Dodgson m-—1 new

P-nets m-Dodgson m-1 [Glick15, Yaol4]
P-nets m-Dodgson* m-—2 new

Int. cr-maps (m, 2)-Devron 2m -2 | new

D. hol. f,, [m]s =1 (m, 2)-Devron 2m -2 [Yaol4d]

D. hol. f,, [m]e =0 (m, 2)-Devron 2m -3 | new

D. hol. f., [m]s =0 (m, 2)-Devron* 2m—4 | new
Orthogonal CP (2m, 2)-Devron m-—2 new

Polygon recutting (m, 1)-Devron m-1 [Glick15]

Circle intersection dyn. | (m,1)-Devron m-—1 new

Circle intersection dyn. | (m,2)-Devron 2m—4 | new

Pentagram map m-Dodgson m—1 [Glick15, Yaol4]
Pentagram map (m, 2)-Devron 2m—4 | new




