THE DSKP RECURRENCE:

Combinatorial aspects and geometric systems

Béatrice de Tilière University Paris-Dauphine

joint works with

Niklas Affolter (TU Berlin) & Paul Melotti (U. Paris Saclay)

Rencontre d'automne, ANR DIMERS October 18, 2022

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

OUTLINE

- The dSKP equation + recurrence
- Combinatorial solution I
- Geometric applications
- Devron property + combinatorial solution II

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

• Geometric applications

The discrete Schwarzian Kadomtsev-Petviashvili equation (dSKP)

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- Discrete version of Schwarzian KP equation, related to soliton theory [Bogdanov, Konopelchenko '98],
- Discrete version of quasi-conformal maps [Konopelchenko, Schief '01],
- Many geometric systems.

Menelaus' theorem

Theorem (Menelaus (~100 AD))

Let ABC be a triangle, and let D be a point on (BC), E on (AC) and F on (AB).

Then D, E, F are on a line iff, in complex coordinates,

$$\frac{a-f}{f-b} \times \frac{b-d}{d-c} \times \frac{c-e}{e-a} = -1.$$

MIQUEL'S THEOREM

Theorem (Miquel '1838)

Given the four external circles, the points A, B, C, D are concyclic iff the points A', B', C', D' are.

THEOREM (AFFOLTER '21, KENYON-LAM-RAMASSAMY-RUSSKIKH '22)

If the above holds, the circle centers satisfy

$$\frac{u-u_1}{u_1-u_2} \times \frac{u_2-u'}{u'-u_3} \times \frac{u_3-u_4}{u_4-u} = -1.$$

 → Related to *t*-realizations of the dimer model [KLRR, Chelkak-Laslier-Russkikh '20], Miquel's dynamics on the dimer model [Ramassamy '20; KLRR]. CLASSIFICATION OF CONSISTENT EQU. [Adler-Bobenko-Suris '03, '11]

$$a = \int_{c}^{b} f(a, b, c, d) = 0$$

An equation on quads, F(a, b, c, d) = 0, is said to be consistent if it propagates uniquely on a cube:

~ Analogous definition for equations on cubes, and on octahedra.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ うへつ

CLASSIFICATION OF CONSISTENT EQUATIONS

Theorem (Adler-Bobenko-Suris '11)

Up to admissible transformations, the consistent equations on octahedra are:

$$\chi_1 : f = \frac{bd + ce}{a}$$

$$\chi_2 : f = \frac{cbd - bda - cbe - cde + bde + cae}{bd + ca - ba - da - ce + ae}$$

$$\chi_3 : f = \frac{cb - ca + da - de}{b - e}$$

$$\chi_4 : f = \frac{bda + cbe - bde - cae}{a(b - e)}$$

$$\chi_5 : f = \frac{bda + cbe - cae}{ba}$$

• χ_1 is dKP.

- χ_2 is dSKP.
- χ_3, χ_4, χ_5 can be obtained from χ_2 by taking appropriate limits

THE DSKP RECURRENCE

▶ Octahedral-tetrahedral lattice: $\mathscr{L} = \{(i, j, k) \in \mathbb{Z}^3 : i + j + k \in 2\mathbb{Z}\}.$

• A function $x : \mathscr{L} \to \hat{\mathbb{C}}$ satisfies the dSKP recurrence if

$$\frac{(x_{-e_3} - x_{e_2})(x_{-e_1} - x_{e_3})(x_{-e_2} - x_{e_1})}{(x_{e_2} - x_{-e_1})(x_{e_3} - x_{-e_2})(x_{e_1} - x_{-e_3})} = -1,$$

where $x_q(p) := x(p+q)$ for every $q \in \{e_i\}_{i=1}^3$, and the relation is evaluated at any $p \in \mathbb{Z}^3 \setminus \mathscr{L}$.

くしゃ 本間を 本面を 本面を キロを

THE DSKP RECURRENCE

Consider initial conditions a = (a_{i,j})_{(i,j)∈Z²} at levels 0 and 1, *i.e.*, at vertices (i, j, [i + j]₂)_{(i,j)∈Z²} of L.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

What is the value of x(i, j, k), k ≥ 1, in terms of the initial conditions?

dSKP - Solution I

Theorem (Affolter-dT-Melotti '22)

Let $x : \mathscr{L} \to \hat{\mathbb{C}}$ be a function satisfying the dSKP recurrence with initial conditions $a = (a_{i,j})_{(i,j)\in\mathbb{Z}^2}$ at vertices $(i,j,[i+j]_2)_{(i,j)\in\mathbb{Z}^2}$. Then, for all points $(i,j,k) \in \mathscr{L}$ such that $k \ge 1$,

$$x(i, j, k) = Y(A_{k-1}[a_{i,j}], a),$$

where

$$Y(A_{k-1}[a_{i,j}], a) := C(A_{k-1}[a_{i,j}]) \frac{Z_{\overrightarrow{\operatorname{dim}}}(A_{k-1}[a_{i,j}], a^{-1}, \varphi)}{Z_{\overrightarrow{\operatorname{dim}}}(A_{k-1}[a_{i,j}], a, \varphi)}$$

DSKP - Solution I: Aztec diamond $A_k[a_{i,j}]$

▶ $A_{k-1}[a_{i,j}]$: Aztec diamond of size k-1 centered at $a_{i,j}$.

Example: Aztec diamond $A_3[a_{1,1}]$ used to compute x(1, 1, 4).

 \rightsquigarrow Aztec diamond with face weights.

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ ()

DSKP - Solution I: partition function $Z_{\overrightarrow{\text{dim}}}(A, a, \varphi)$

► Oriented dimer configuration M of Aztec diamond A: unoriented version M is a dimer configuration, *i.e.*, subset of edges s.t. every vertex is incident to exactly one edge of M ~→ M.

- DSKP Solution I: partition function $Z_{\overrightarrow{\dim}}(A, a, \varphi)$
 - Kasteleyn orientation φ ∈ {−1,1}^E: skew-symmetric function on E such that, for every inner face f,

$$\prod_{(w,b)\in\partial f}\varphi_{(w,b)}=-1.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

dSKP - Solution I: partition function $Z_{\overrightarrow{\dim}}(A, a, \varphi)$

Aztec diamond A with face weights $(a_f)_{f \in F}$.

DSKP - Solution I: partition function $Z_{\overrightarrow{\text{dim}}}(A, a, \varphi)$

- Every oriented dimer edge has
 - a Kasteleyn weight: $\varphi_{\vec{e}}$
 - a face weight on the right: $a_{f(\vec{e})}$

• The partition function $Z_{\overrightarrow{dim}}(A, a, \varphi)$:

$$Z_{\overrightarrow{\dim}}(A, a, \varphi) = \sum_{\vec{M} \in \vec{\mathcal{M}}} \prod_{\vec{e} \in \vec{M}} \varphi_{\vec{e}} \ a_{f(\vec{e})}.$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ うへつ

DSKP - Solution I

Theorem (Affolter-dT-Melotti '22)

Let $x : \mathscr{L} \to \hat{\mathbb{C}}$ be a function satisfying the dSKP recurrence with initial conditions $a = (a_{i,j})_{(i,j)\in\mathbb{Z}^2}$ at vertices $(i,j,[i+j]_2)_{(i,j)\in\mathbb{Z}^2}$. Then, for all points $(i,j,k) \in \mathscr{L}$ such that $k \ge 1$,

$$x(i,j,k) = C(A_{k-1}[a_{i,j}]) \frac{Z_{\overline{\dim}}(A_{k-1}[a_{i,j}], a^{-1}, \varphi)}{Z_{\overline{\dim}}(A_{k-1}[a_{i,j}], a, \varphi)} =: Y(A_{k-1}[a_{i,j}], a).$$

Example: Aztec diamond $A_3[a_{1,1}^{a_{1,-2}}]$ used to compute x(1,1,4).

DSKP - Solution I: idea of proof [Speyer '07]

Show that for any bipartite planar G with face weights $(a_f)_{f \in F}$, the ratio of partition functions Y(G, a) is invariant when:

• an urban renewal is performed and weights satisfy dSKP

• a contraction/expansion of a degree 2 vertex

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ うへつ

▶ Then, do an induction

Previous results of the same kind

- dKP/Octahedron recurrence/Dodgson condensation: [Speyer '07]
 w dimer model
- ► Cube recurrence: [Caroll, Speyer '04] ~ cube groves
- Hexahedron recurrence: [Kenyon, Pemantle '16] ~> double dimer model
- ▶ Kashaev's recurrence: [Melotti '18] $\rightsquigarrow C_2^1$ -loop model

All of the above solutions are Laurent polynomials in the initial data, with coefficients equal to 1 in the first 2 cases [Fomin, Zelevinsky '02].

Application to discrete holomorphic functions

A function $z : \mathbb{Z}^2 \to \hat{\mathbb{C}}$ is discrete holomorphic [Bobenko-Pinkall '96] if, for every quad of \mathbb{Z}^2 ,

$$\frac{z_{i,j} - z_{i+1,j}}{z_{i+1,j} - z_{i+1,j+1}} \frac{z_{i+1,j+1} - z_{i,j+1}}{z_{i,j+1} - z_{i,j}} = -1.$$

The data of $(z_{i,j})_{i+j \in \{0,1\}}$ is enough to determine all of z.

Application to discrete holomorphic functions

A function $z : \mathbb{Z}^2 \to \hat{\mathbb{C}}$ is discrete holomorphic [Bobenko-Pinkall '96] if, for every quad of \mathbb{Z}^2 ,

$$\frac{Z_{i,j} - Z_{i+1,j}}{Z_{i+1,j} - Z_{i+1,j+1}} \frac{Z_{i+1,j+1} - Z_{i,j+1}}{Z_{i,j+1} - Z_{i,j}} = -1.$$

THEOREM (A-DT-M '22) For every $(i, j) \in \mathbb{Z}^2$ such that $i + j \ge 2$, there is an Aztec diamond A_{i+j-2} with explicit weights $a = (z_{k,\ell})_{k+\ell \in \{0,1,2\}}$ such that

$$z_{i,j} = Y(A_{i+j-2}, a).$$

Aztec diamond used for $z_{4,1}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Application to pentagram map [Schwartz '92]

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○臣 ○ のへぐ

Application to pentagram map [Schwartz '92]

(ロ)、(型)、(E)、(E)、(E)、(D)へ(C)

Application to pentagram map

Theorem (A-dT-M '22)

For all $j \ge 1$ and $i \in \mathbb{Z}$, there is an Aztec diamond A_{j-1} with explicit weights $a = (u_k, T(u)_\ell)_{k,\ell \in \mathbb{Z}}$ such that

 $T^j(u)_i = Y(A_{j-1}, a).$

Remark: [Glick '11] has an explicit expression using *F*-polynomials of cluster algebras.

Devron property

- ▶ Devron property [Glick '15]: for a birational integrable dynamics T, if some data is singular for T^{-1} , then there should be an $n \in \mathbb{N}$ such that it is singular for T^n .
- Singular data for backwards dSKP:
 - I. (m, m)-periodic + every p-th diagonal at height 0 is constant.
 - 2. (m, m) + (m, -m)-periodic + diagonals at height 0 are constant + rows at height 1 are translates of each other.

Devron property

- I. (m, m)-periodic + every p-th diagonal at height 0 is constant.
- 2. (m,m) + (m,-m)-periodic + diagonals at height 0 are constant + rows at height 1 are translates of each other.

Theorem (Affolter-dT-Melotti '22)

Under assumptions 1, after mp - 2p + 1 iterations of the dSKP recurrence, again every p diagonal is constant.

Theorem (Affolter-dT-Melotti '22)

Under assumptions 2, after m - 1 iterations of the dSKP recurrence, the value is constant and equal to the shifted harmonic mean of the initial data:

$$\forall (i,j,m) \in \mathscr{L}, \quad x(i,j,m) = d + \left(\frac{1}{m} \sum_{i=0}^{m-1} \frac{1}{a_{i,1-i} - d}\right).$$

・ロト・西ト・ヨト・ヨー うへぐ

- Consider Aztec diamond A_k with two additional black vertices $\{b_r, \tilde{b}\}$.
- From A_k construct the graph A_k^{\bullet} as follows.

A complementary tree/forest of A_k^{\bullet} is a pair (T, F) of edge config. s.t.

- T is a spanning tree of A_k^{\bullet} rooted at b_r ,
- F is a spanning forest of A_k^{\bullet} rooted at b_r, \tilde{b} ,
- $\mathsf{T} \cap \mathsf{F} = \emptyset$.

 $\rightsquigarrow \mathscr{F}$: set of complementary trees/forests of A_k^{\bullet} .

- Consider Aztec diamond A_k with two additional black vertices $\{b_r, \tilde{b}\}$.
- From A_k construct the graph A_k^{\bullet} as follows.

A complementary tree/forest of A_k^{\bullet} is a pair (T, F) of edge config. s.t.

- T is a spanning tree of A_k^{\bullet} rooted at b_r ,
- F is a spanning forest of A_k^{\bullet} rooted at b_r, \tilde{b} ,
- $\mathsf{T} \cap \mathsf{F} = \emptyset$.

 $\rightsquigarrow \mathscr{F}$: set of complementary trees/forests of A_k^{\bullet} .

- Consider Aztec diamond A_k with two additional black vertices $\{b_r, \tilde{b}\}$.
- From A_k construct the graph A_k^{\bullet} as follows.

A complementary tree/forest of A_k^{\bullet} is a pair (T, F) of edge config. s.t.

- T is a spanning tree of A_k^{\bullet} rooted at b_r ,
- F is a spanning forest of A_k^{\bullet} rooted at b_r, \tilde{b} ,
- $\mathsf{T} \cap \mathsf{F} = \emptyset$.

 $\rightsquigarrow \mathscr{F}$: set of complementary trees/forests of A_k^{\bullet} .

- Consider Aztec diamond A_k with two additional black vertices $\{b_r, \tilde{b}\}$.
- From A_k construct the graph A_k^{\bullet} as follows.

A complementary tree/forest of A_k^{\bullet} is a pair (T, F) of edge config. s.t.

- T is a spanning tree of A_k^{\bullet} rooted at b_r ,
- F is a spanning forest of A_k^{\bullet} rooted at b_r, \tilde{b} ,
- $\mathsf{T} \cap \mathsf{F} = \emptyset$.

 $\rightsquigarrow \mathscr{F}$: set of complementary trees/forests of A_k^{\bullet} .

- Consider Aztec diamond A_k with two additional black vertices $\{b_r, \tilde{b}\}$.
- From A_k construct the graph A_k^{\bullet} as follows.

A complementary tree/forest of A_k^{\bullet} is a pair (T, F) of edge config. s.t.

- T is a spanning tree of A_k^{\bullet} rooted at b_r ,
- F is a spanning forest of A_k^{\bullet} rooted at b_r, \tilde{b} ,
- $\mathsf{T} \cap \mathsf{F} = \emptyset$.

 $\rightsquigarrow \mathscr{F}$: set of complementary trees/forests of A_k^{\bullet} .

Theorem (Affolter-dT-Melotti '22)

Consider Aztec diamond A_k with face weights $a = (a_f)_{f \in F}$. For any Kasteleyn orientation φ ,

$$Z_{\overrightarrow{\operatorname{dim}}}(A_k, a, \varphi) = \pm \sum_{(\mathsf{T}, \mathsf{F}) \in \mathscr{F}} \operatorname{sgn}(\mathsf{T}, \mathsf{F}) \prod_{\overrightarrow{e} \in \mathsf{F}} a_{f_{\overrightarrow{e}}}.$$

Moreover, there is a bijection between terms in the sum in the r.h.s. and monomials of $Z_{\overrightarrow{dim}}(A_k, a, \varphi)$ in the a variables.

Remark

Result in the spirit of [Speyer] [Caroll, Speyer] [Kenyon, Pemantle] [Melotti] giving a combinatorial interpretation of monomials.

DSKP SOLUTION II: IDEA OF PROOF

• Weighted adjacency matrix K(a) of A_k :

$$\forall w \in W, b \in B, \quad K(a)_{w,b} = \begin{cases} a_{f(w,b)} - a_{f(b,w)} & \text{if } w \sim b \\ 0 & \text{otherwise.} \end{cases}$$

Proposition (A-dT-M)

For any Kasteleyn orientation φ of A_k , there exists $\epsilon(\varphi) \in \{-1, 1\}$ s.t.

$$Z_{\overrightarrow{\dim}}(A_k, a, \varphi) = \epsilon(\varphi) \det(K(a))$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

DSKP SOLUTION II: IDEA OF PROOF

• Consider the matrix C(a),

$$\forall f \in F, \ b \in B \cup \{\tilde{b}\}, \quad C(a)_{f,b} = \begin{cases} \pm a_f \\ 0 \end{cases}$$

if b belongs to ∂f , otherwise.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Proposition (A-dT-M)

$$\det(K(a)) = \pm \det \begin{pmatrix} C(1)^{\tilde{b}} & C(1)^B & C(a)^B \end{pmatrix}.$$

DSKP SOLUTION II: IDEA OF PROOF + CONSEQUENCES

The relation

$$Z_{\overline{\operatorname{dim}}}(A_k, a, \varphi) = \pm \det \left(C(1)^{\tilde{b}} \quad C(1)^B \quad C(a)^B \right)$$
(1)

+ extra work allows to prove compl. trees/forests representation.
> Relation (1) + extra work allows to prove the following.

Theorem (A-dT-M '22)

Let $v \in \mathbb{C}^F$ be a non-zero vector such that

$$\begin{pmatrix} C(1)^B & C(a)^B \end{pmatrix}^T v = 0.$$

Let $(v_i)_{i=0}^k$ be the elements corresponding to \circ . Then,

$$Y(A_k, a) = \frac{\sum_{i=0}^k a_{f_i} v_i}{\sum_{i=0}^k v_i}.$$

Both theorems + extra work \Rightarrow Devron properties.

Application to P-nets

A map $p : \mathbb{Z}^2 \to \hat{\mathbb{C}}$ is a P-net [Bobenko-Pinkall '99] if,

$$\forall (i,j) \in \mathbb{Z}^2, \quad \frac{1}{p_{i+1,j} - p_{i,j}} - \frac{1}{p_{i,j+1} - p_{i,j}} + \frac{1}{p_{i-1,j} - p_{i,j}} - \frac{1}{p_{i,j-1} - p_{i,j}} = 0.$$

The data of $(p_{i,j})_{j \in \{0,1\}}$ determines p.

Theorem (Glick '15, Yao '14)

Let $m \ge 1$, and let p be an m-periodic P-net such that, for all $i \in \mathbb{Z}$, $p_{i,0} = 0$. Then, if the following are well defined,

$$\forall i \in \mathbb{Z}, \quad p_{i,m} = \left(\frac{1}{m} \sum_{\ell=0}^{m-1} p_{\ell,1}^{-1}\right)^{-1},$$

that is the singularity repeats after m - 1 steps, and its value is the harmonic mean of $(p_{i,1})$.

 \rightsquigarrow We provide an alternative proof.

Application to P-nets

A map $p : \mathbb{Z}^2 \to \hat{\mathbb{C}}$ is a P-net [Bobenko-Pinkall '99] if, $\forall (i,j) \in \mathbb{Z}^2, \quad \frac{1}{p_{i+1,j} - p_{i,j}} - \frac{1}{p_{i,j+1} - p_{i,j}} + \frac{1}{p_{i-1,j} - p_{i,j}} - \frac{1}{p_{i,j-1} - p_{i,j}} = 0.$

The data of $(p_{i,j})_{j \in \{0,1\}}$ determines *p*.

Illustration. The black dot is at 0 and corresponds to $p_{i,0}$; the brown dots are the values of $p_{i,1}$. Those are *m*-periodic with m = 3 (left), resp. m = 4 (center), resp. m = 5 (right).

Application to integrable cross-ratio maps

Let $\alpha, \beta : \mathbb{Z} \to \mathbb{C} \setminus \{0\}$. An integrable cross-ratio map [Bobenko-Pinkall '99] is a map $z : \mathbb{Z}^2 \to \hat{\mathbb{C}}$ such that,

$$\forall (i,j) \in \mathbb{Z}^2, \quad \frac{(z_{i,j} - z_{i+1,j})(z_{i+1,j+1} - z_{i,j+1})}{(z_{i+1,j} - z_{i+1,j+1})(z_{i,j+1} - z_{i,j})} = \frac{\alpha_i}{\beta_j}.$$

Theorem (A-dT-M '22)

Let $m \ge 1$, and let \tilde{z} be an *m*-periodic integrable cross-ratio map such that $\tilde{z}_{i,0} = 0$ for all $i \in 2\mathbb{Z}$. Then, if the following are well defined,

$$\forall i \in 2\mathbb{Z}, \quad \tilde{z}_{i,2m-1} = \frac{\sum_{\ell=0}^{m-1} (\alpha_{\ell} - \beta_{\ell})}{\sum_{\ell=0}^{m-1} \frac{1}{\tilde{z}_{2\ell+1,1}} (\alpha_{\ell} - \beta_{-\ell-1})},$$

A D N A 目 N A E N A E N A E N A C N

where \tilde{z} is z rotated by -45° .

Consequences for discrete holomorphic functions

- Specifying $\alpha_{\ell} \equiv -1$, $\beta_{\ell} = 1$, we recover a theorem of [Yao '14] when *m* is odd.
- ▶ When *m* is even, using relation to P-nets, we prove that the singularity occurs one step earlier.

Propagation of discrete holomorphic functions. Left: 3-periodic case. Center and right: 4-periodic case.

・ロト・西ト・ヨト・ヨー もんぐ

Application to pentagram map

Theorem [Schwartz '07, Glick '14, Yao '14]

If (v_1, \ldots, v_{2m}) is an axis-aligned polygon, then if well-defined, $T^{m-1}(v_1, \ldots, v_{2m})$ is reduced to a point, which is the center of mass of (v_1, \ldots, v_{2m}) .

→ We provide an alternative proof.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

Application to pentagram map

Theorem [A-dT-M '22]

If (v_1, \ldots, v_{2m}) is half-axis-aligned, then $T^{2m-4}(v_1, \ldots, v_{2m})$ is singular (that is, $T^{2m-3}(v_1, \ldots, v_{2m})$ is undefined).

CONCLUSION

System	Initial condition	Steps	Citations
Miquel	<i>m</i> -Dodgson	<i>m</i> – 1	new
P-nets	<i>m</i> -Dodgson	<i>m</i> – 1	[Glick15, Yao14]
P-nets	<i>m</i> -Dodgson*	<i>m</i> – 2	new
Int. cr-maps	(<i>m</i> , 2)-Devron	2 <i>m</i> – 2	new
D. hol. f., $[m]_2 = 1$	(<i>m</i> , 2)-Devron	2m – 2	[Yao14]
D. hol. f., $[m]_2 = 0$	(<i>m</i> , 2)-Devron	2 <i>m</i> – 3	new
D. hol. f., $[m]_2 = 0$	(<i>m</i> , 2)-Devron*	2 <i>m</i> – 4	new
Orthogonal CP	(2 <i>m</i> , 2)-Devron	<i>m</i> – 2	new
Polygon recutting	(<i>m</i> , 1)-Devron	<i>m</i> – 1	[Glick15]
Circle intersection dyn.	(<i>m</i> , 1)-Devron	<i>m</i> – 1	new
Circle intersection dyn.	(<i>m</i> , 2)-Devron	2 <i>m</i> – 4	new
Pentagram map	<i>m</i> -Dodgson	<i>m</i> – 1	[Glick15, Yao14]
Pentagram map	(<i>m</i> , 2)-Devron	2m - 4	new