Double-dimer condensation and the dP_3 quiver

Helen Jenne

CNRS, Institut Denis Poisson, Université de Tours and Université d'Orléans

DIMERS Seminar

October 14, 2020

1 / 33

- 2 Main Result: Double-Dimer Condensation
- 3 Ideas of Proof
- 4 Application: the dP_3 quiver and the associated cluster algebra

コト (個) (音) (音) (音) (の)の

• Today $G = (V_1, V_2, E)$ is a finite bipartite planar graph.

• Let $Z^D(G)$ denote the partition function.

$$Z^D(G) = xyz + x + z$$
 x y z

• Today $G = (V_1, V_2, E)$ is a finite bipartite planar graph.

• Let $Z^{D}(G)$ denote the partition function.

$$Z^D(G) = xyz + x + z$$

Theorem (Kuo04, Theorem 5.1)

Let vertices a, b, c, and d appear in a cyclic order on a face of G. If a, $c \in V_1$ and b, $d \in V_2$, then $Z^D(G)Z^D(G - \{a,b,c,d\}) = Z^D(G - \{a,b\})Z^D(G - \{c,d\}) + Z^D(G - \{a,d\})Z^D(G - \{b,c\})$

3 / 33

• Today $G = (V_1, V_2, E)$ is a finite bipartite planar graph.

• Let $Z^{D}(G)$ denote the partition function.

$$Z^D(G) = xyz + x + z$$

Theorem (Kuo04, Theorem 5.1)

Let vertices a, b, c, and d appear in a cyclic order on a face of G. If a, $c \in V_1$ and b, $d \in V_2$, then $Z^D(G)Z^D(G - \{a,b,c,d\}) = Z^D(G - \{a,b\})Z^D(G - \{c,d\}) + Z^D(G - \{a,d\})Z^D(G - \{b,c\})$

• Today $G = (V_1, V_2, E)$ is a finite bipartite planar graph.

• Let $Z^{D}(G)$ denote the partition function.

$$Z^D(G) = xyz + x + z$$

Theorem (Kuo04, Theorem 5.1)

Let vertices a, b, c, and d appear in a cyclic order on a face of G. If a, $c \in V_1$ and b, $d \in V_2$, then $Z^D(G)Z^D(G - \{a,b,c,d\}) = Z^D(G - \{a,b\})Z^D(G - \{c,d\}) + Z^D(G - \{a,d\})Z^D(G - \{b,c\})$

• Today $G = (V_1, V_2, E)$ is a finite bipartite planar graph.

• Let $Z^{D}(G)$ denote the partition function.

$$Z^D(G) = xyz + x + z$$

Theorem (Kuo04, Theorem 5.1)

Let vertices a, b, c, and d appear in a cyclic order on a face of G. If a, $c \in V_1$ and b, $d \in V_2$, then $Z^D(G)Z^D(G - \{a,b,c,d\}) = Z^D(G - \{a,b\})Z^D(G - \{c,d\}) + Z^D(G - \{a,d\})Z^D(G - \{b,c\})$

Theorem (Kuo04, Theorem 5.1)

Let vertices a, b, c, and d appear in a cyclic order on a face of G. If a, $c \in V_1$ and b, $d \in V_2$, then $Z^D(G)Z^D(G - \{a,b,c,d\}) = Z^D(G - \{a,b\})Z^D(G - \{c,d\}) + Z^D(G - \{a,d\})Z^D(G - \{b,c\})$

Examples of non-bijective proofs:

- Fulmek, Graphical condensation, overlapping Pfaffians and superpositions of Matchings
- Speyer, Variations on a theme of Kasteleyn, with Application to the TNN Grassmannian

4 / 33

Theorem (Kuo04, Theorem 5.1)

Let vertices a, b, c, and d appear in a cyclic order on a face of G. If a, $c \in V_1$ and b, $d \in V_2$, then $Z^D(G)Z^D(G - \{a,b,c,d\}) = Z^D(G - \{a,b\})Z^D(G - \{c,d\}) + Z^D(G - \{a,d\})Z^D(G - \{b,c\})$

Examples of non-bijective proofs:

- Fulmek, Graphical condensation, overlapping Pfaffians and superpositions of Matchings
- Speyer, Variations on a theme of Kasteleyn, with Application to the TNN Grassmannian

Theorem (Desnanot-Jacobi identity/Dodgson condensation)

$$\det(M) \det(M_{i,j}^{i,j}) = \det(M_i^i) \det(M_j^j) - \det(M_i^j) \det(M_j^j)$$

 M_i^j is the matrix M with the *i*th row and the *j*th column removed.

・ロト ・聞ト ・ヨト ・ヨト

Tiling enumeration

• New proof that there are $2^{n(n+1)/2}$ ways to tile the order-*n* Aztec diamond (EKLP92)

• New proof of MacMahon's product formula for the generating function for plane partitions $\pi \subseteq B(r, s, t)$

Tiling enumeration

• New proof that there are $2^{n(n+1)/2}$ ways to tile the order-*n* Aztec diamond (EKLP92)

- New proof of MacMahon's product formula for the generating function for plane partitions $\pi \subseteq B(r, s, t)$
- Cluster algebras (LM17, LM20) Combinatorial interpretation of toric cluster variables for the dP₃ quiver

Tiling enumeration

• New proof that there are $2^{n(n+1)/2}$ ways to tile the order-*n* Aztec diamond (EKLP92)

- New proof of MacMahon's product formula for the generating function for plane partitions $\pi \subseteq B(r, s, t)$
- Cluster algebras (LM17, LM20) Combinatorial interpretation of toric cluster variables for the dP₃ quiver

Main result. An analogue of Kuo's theorem for double-dimer configs.

Tiling enumeration

• New proof that there are $2^{n(n+1)/2}$ ways to tile the order-*n* Aztec diamond (EKLP92)

- New proof of MacMahon's product formula for the generating function for plane partitions $\pi \subseteq B(r, s, t)$
- Cluster algebras (LM17, LM20) Combinatorial interpretation of toric cluster variables for the dP₃ quiver

Main result. An analogue of Kuo's theorem for double-dimer configs.

Application: Building on LM17 and LM20, give combinatorial interpretations of toric cluster variables for the dP_3 quiver in the case where the single dimer model was not sufficient (joint work with Lai and Musiker).

Double-dimer configurations

N is a set of special vertices called *nodes* on the outer face of G.

Definition (Double-dimer configuration on (G, \mathbf{N}))

- Configuration of
 - $\bullet \ \ell$ disjoint loops
 - Doubled edges
 - Paths connecting nodes in pairs

Double-dimer configurations

N is a set of special vertices called *nodes* on the outer face of G.

Definition (Double-dimer configuration on (G, \mathbf{N}))

- Configuration of
 - $\bullet~\ell$ disjoint loops
 - Doubled edges
 - Paths connecting nodes in pairs

Its weight is the product of its edge weights $\times~2^\ell$

6 / 33

Double-dimer configurations

N is a set of special vertices called *nodes* on the outer face of G.

Definition (Double-dimer configuration on (G, \mathbf{N}))

- Configuration of
 - $\bullet \ \ell$ disjoint loops
 - Doubled edges
 - Paths connecting nodes in pairs

Its weight is the product of its edge weights $imes 2^\ell$

Definition (Tripartite pairing)

A planar pairing σ of **N** is *tripartite* if the nodes can be divided into ≤ 3 sets of circularly consecutive nodes so that no node is paired with a node in the same set.

We often color the nodes in the sets red, green, and blue, in which case σ has no monochromatic pairs.

Definition (Tripartite pairing)

A planar pairing σ of **N** is *tripartite* if the nodes can be divided into ≤ 3 sets of circularly consecutive nodes so that no node is paired with a node in the same set.

We often color the nodes in the sets red, green, and blue, in which case σ has no monochromatic pairs.

Dividing nodes into three sets R, G, and B defines a tripartite pairing.

 $Z^{DD}_{\sigma}(G, \mathbf{N})$ denotes the weighted sum of all DD config with pairing σ .

 $Z^{DD}_{\sigma}(G, \mathbf{N})$ denotes the weighted sum of all DD config with pairing σ .

Theorem (J.)

Divide **N** into sets *R*, *G*, and *B* and let σ be the corr. tripartite pairing. Let $x, y, w, v \in \mathbf{N}$ such that $x < w \in V_1$ and $y < v \in V_2$. If $\{x, y, w, v\}$ contains at least one node of each *RGB* color and x, y, w, v appear in cyclic order then $Z_{\sigma}^{DD}(G, \mathbf{N})Z_{\sigma_{xywv}}^{DD}(G, \mathbf{N} - \{x, y, w, v\}) =$

$Z^{DD}_{\sigma_{xy}}(G, \mathbf{N} - \{x, y\}) Z^{DD}_{\sigma_{wy}}(G, \mathbf{N} - \{w, v\}) + Z^{DD}_{\sigma_{xy}}(G, \mathbf{N} - \{x, v\}) Z^{DD}_{\sigma_{wy}}(G, \mathbf{N} - \{w, y\})$

Example.

 $Z_{\sigma}^{DD}(\mathbf{N})Z_{\sigma_{1258}}^{DD}(\mathbf{N}-1,2,5,8) = Z_{\sigma_{12}}^{DD}(\mathbf{N}-1,2)Z_{\sigma_{58}}^{DD}(\mathbf{N}-5,8) + Z_{\sigma_{18}}^{DD}(\mathbf{N}-1,8)Z_{\sigma_{25}}^{DD}(\mathbf{N}-2,5)$

イロト イ団ト イヨト イヨト 三日

 $Z^{DD}_{\sigma}(G, \mathbf{N})$ denotes the weighted sum of all DD config with pairing σ .

Theorem (J.)

Divide **N** into sets *R*, *G*, and *B* and let σ be the corr. tripartite pairing. Let $x, y, w, v \in \mathbf{N}$ such that $x < w \in V_1$ and $y < v \in V_2$. If $\{x, y, w, v\}$ contains at least one node of each RGB color and x, y, w, v appear in cyclic order then $Z_{\sigma}^{DD}(G, \mathbf{N}) Z_{\sigma_{xywv}}^{DD}(G, \mathbf{N} - \{x, y, w, v\}) =$

 $Z^{DD}_{\sigma_{xy}}(G, \mathbf{N} - \{x, y\}) Z^{DD}_{\sigma_{wy}}(G, \mathbf{N} - \{w, v\}) + Z^{DD}_{\sigma_{xy}}(G, \mathbf{N} - \{x, v\}) Z^{DD}_{\sigma_{wy}}(G, \mathbf{N} - \{w, y\})$

Example.

 $Z^{DD}_{\sigma}(G, \mathbf{N})$ denotes the weighted sum of all DD config with pairing σ .

Theorem (J.)

Divide **N** into sets *R*, *G*, and *B* and let σ be the corr. tripartite pairing. Let $x, y, w, v \in \mathbf{N}$ such that $x < w \in V_1$ and $y < v \in V_2$. If $\{x, y, w, v\}$ contains at least one node of each RGB color and x, y, w, v appear in cyclic order then $Z_{\sigma}^{DD}(G, \mathbf{N}) Z_{\sigma_{xywv}}^{DD}(G, \mathbf{N} - \{x, y, w, v\}) =$

 $Z^{DD}_{\sigma_{xy}}(G, \mathbf{N} - \{x, y\}) Z^{DD}_{\sigma_{wy}}(G, \mathbf{N} - \{w, v\}) + Z^{DD}_{\sigma_{xy}}(G, \mathbf{N} - \{x, v\}) Z^{DD}_{\sigma_{wy}}(G, \mathbf{N} - \{w, y\})$

Example.

We only need the two nodes of the same RGB color to be opposite in BW color, and

Theorem (Kuo04, Theorem 5.1)

a Let vertices a, b, c, and d appear in a cyclic order on a face of G. If $a, c \in V_1$ and $b, d \in V_2$, then

 $Z^{D}(G)Z^{D}(G - \{a, b, c, d\}) = Z^{D}(G - \{a, b\})Z^{D}(G - \{c, d\}) + Z^{D}(G - \{a, d\})Z^{D}(G - \{b, c\})$

Theorem (J.)

Let $x, y, w, v \in \mathbf{N}$ such that $x < w \in V_1$ and $y < v \in V_2$. If $\{x, y, w, v\}$ contains at least one node of each RGB color and the two nodes of the same RGB color are opposite in BW color then $Z_{\sigma}^{DD}(G, \mathbf{N})Z_{\sigma_{xywv}}^{DD}(G - \{x, y, w, v\}, \mathbf{N} - \{x, y, w, v\}) =$ $Z_{\sigma_{xy}}^{DD}(G - \{x, y\}, \mathbf{N} - \{x, y\})Z_{\sigma_{wv}}^{DD}(G - \{w, v\}, \mathbf{N} - \{w, v\}) +$ $Z_{\sigma_{xv}}^{DD}(G - \{x, v\}, \mathbf{N} - \{x, v\})Z_{\sigma_{wy}}^{DD}(G - \{w, y\}, \mathbf{N} - \{w, y\})$

Theorem (Kuo04, Theorem 5.1)

a Let vertices a, b, c, and d appear in a cyclic order on a face of G. If $a, c \in V_1$ and $b, d \in V_2$, then

 $Z^{D}(G)Z^{D}(G - \{a, b, c, d\}) = Z^{D}(G - \{a, b\})Z^{D}(G - \{c, d\}) + Z^{D}(G - \{a, d\})Z^{D}(G - \{b, c\})$

Theorem (J.)

Let $x, y, w, v \in \mathbf{N}$ such that $x < w \in V_1$ and $y < v \in V_2$. If $\{x, y, w, v\}$ contains at least one node of each RGB color and the two nodes of the same RGB color are opposite in BW color then $Z_{\sigma}^{DD}(G, \mathbf{N})Z_{\sigma_{xywv}}^{DD}(G - \{x, y, w, v\}, \mathbf{N} - \{x, y, w, v\}) =$ $Z_{\sigma_{xy}}^{DD}(G - \{x, y\}, \mathbf{N} - \{x, y\})Z_{\sigma_{wv}}^{DD}(G - \{w, v\}, \mathbf{N} - \{w, v\}) +$ $Z_{\sigma_{xv}}^{DD}(G - \{x, v\}, \mathbf{N} - \{x, v\})Z_{\sigma_{wy}}^{DD}(G - \{w, y\}, \mathbf{N} - \{w, y\})$

∢ 臣 ▶ ∢ 臣 ▶

Theorem (Kuo04, Theorem 5.2)

 $Z^{D}(G)Z^{D}(G - \{a, b, c, d\}) = Z^{D}(G - \{a, d\})Z^{D}(G - \{b, c\}) - Z^{D}(G - \{a, b\})Z^{D}(G - \{c, d\})$

Theorem (J.)

Let $x, y, w, v \in \mathbf{N}$ such that $x < w \in V_1$ and $y < v \in V_2$. If $\{x, y, w, v\}$ contains at least one node of each RGB color and the two nodes of the same RGB color are the same in BW color then

$$Z_{\sigma_{xy}}^{DD}(G, \mathbf{N}) Z_{\sigma_{xywv}}^{DD}(G - \{x, y, w, v\}, \mathbf{N} - \{x, y, w, v\}) = Z_{\sigma_{xy}}^{DD}(G - \{x, y\}, \mathbf{N} - \{x, y\}) Z_{\sigma_{wv}}^{DD}(G - \{w, v\}, \mathbf{N} - \{w, v\}) - Z_{\sigma_{xv}}^{DD}(G - \{x, v\}, \mathbf{N} - \{x, v\}) Z_{\sigma_{wy}}^{DD}(G - \{w, y\}, \mathbf{N} - \{w, y\})$$

Theorem (Kuo04, Theorem 5.2)

a Let vertices a, c, b, and d appear in a cyclic order on a face of $c \mapsto b$ G. If $a, c \in V_1$ and $b, d \in V_2$, then

 $Z^{D}(G)Z^{D}(G - \{a, b, c, d\}) = Z^{D}(G - \{a, d\})Z^{D}(G - \{b, c\}) - Z^{D}(G - \{a, b\})Z^{D}(G - \{c, d\})$

Theorem (J.)

Let $x, y, w, v \in \mathbf{N}$ such that $x < w \in V_1$ and $y < v \in V_2$. If $\{x, y, w, v\}$ contains at least one node of each RGB color and the two nodes of the same RGB color are the same in BW color then $Z^{DD}_{\sigma}(G, \mathbf{N})Z^{DD}_{\sigma_{xywv}}(G - \{x, y, w, v\}, \mathbf{N} - \{x, y, w, v\}) =$

$$Z^{DD}_{\sigma_{xy}}(G - \{x, y\}, \mathbf{N} - \{x, y\})Z^{DD}_{\sigma_{wy}}(G - \{w, v\}, \mathbf{N} - \{w, v\}) - Z^{DD}_{\sigma_{xy}}(G - \{x, v\}, \mathbf{N} - \{x, v\})Z^{DD}_{\sigma_{wy}}(G - \{w, y\}, \mathbf{N} - \{w, y\})$$

$$\widehat{\Pr} \begin{pmatrix} 1 & 3 & 5 \\ 8 & 4 & 5 \\ 1 & 4 & 5$$

Definition (KW11a)

 $X_{i,j} = \frac{Z^{D}(G_{i,j}^{BW})}{Z^{D}(G^{BW})}$, where $G^{BW} \subseteq G$ only contains nodes that are black and odd or white and even.

$$\widehat{\Pr} \begin{pmatrix} 1 & 3 & 5 \\ 8 & 4 & 5 \\ 1 & 4 & 5$$

Definition (KW11a)

 $X_{i,j} = \frac{Z^D(G_{i,j}^{BW})}{Z^D(G^{BW})}$, where $G^{BW} \subseteq G$ only contains nodes that are black and odd or white and even.

$$\widehat{\Pr} \begin{pmatrix} 1 & 3 & 5 \\ 3 & 4 & 5 \\ 8 & 4 & 2 & 6 \\ 4 & 2 & 6 \end{pmatrix} = X_{1,4}X_{2,5}X_{3,6} + X_{1,2}X_{3,4}X_{5,6}$$

$$\widehat{\Pr} \begin{pmatrix} 1 & 3 & 5 & 7 \\ 8 & 4 & 2 & 6 \\ 4 & 2 & 6 \end{pmatrix} = X_{1,8}X_{3,4}X_{5,2}X_{7,6} - X_{1,4}X_{3,8}X_{5,2}X_{7,6} + X_{1,6}X_{3,4}X_{5,8}X_{7,2} - X_{1,8}X_{3,6}X_{5,2}X_{7,4} - X_{1,4}X_{3,6}X_{5,8}X_{7,2} + X_{1,6}X_{3,8}X_{5,2}X_{7,4}$$

Definition (KW11a)

 $X_{i,j} = \frac{Z^D(G_{i,j}^{BW})}{Z^D(G^{BW})}$, where $G^{BW} \subseteq G$ only contains nodes that are black and odd or white and even.

$$\widehat{\Pr} \begin{pmatrix} 1 & 3 & 5 \\ 3 & 4 & 5 \\ 8 & 4 & 2 & 6 \\ 4 & 2 & 6 \end{pmatrix} = X_{1,4}X_{2,5}X_{3,6} + X_{1,2}X_{3,4}X_{5,6}$$

$$\widehat{\Pr} \begin{pmatrix} 1 & 3 & 5 & 7 \\ 8 & 4 & 2 & 6 \\ 4 & 2 & 6 \end{pmatrix} = X_{1,8}X_{3,4}X_{5,2}X_{7,6} - X_{1,4}X_{3,8}X_{5,2}X_{7,6} + X_{1,6}X_{3,4}X_{5,8}X_{7,2} - X_{1,8}X_{3,6}X_{5,2}X_{7,4} - X_{1,4}X_{3,6}X_{5,8}X_{7,2} + X_{1,6}X_{3,8}X_{5,2}X_{7,4}$$

Definition (KW11a)

 $X_{i,j} = \frac{Z^D(G_{i,j}^{BW})}{Z^D(G^{BW})}$, where $G^{BW} \subseteq G$ only contains nodes that are black and odd or white and even.

$$\widehat{\Pr} \begin{pmatrix} 1 & 3 & 5 \\ 3 & 4 & 5 \\ 8 & 4 & 2 & 6 \\ 4 & 2 & 6 \end{pmatrix} = X_{1,4}X_{2,5}X_{3,6} + X_{1,2}X_{3,4}X_{5,6}$$

$$\widehat{\Pr} \begin{pmatrix} 1 & 3 & 5 & 7 \\ 8 & 4 & 2 & 6 \\ 4 & 2 & 6 \end{pmatrix} = X_{1,8}X_{3,4}X_{5,2}X_{7,6} - X_{1,4}X_{3,8}X_{5,2}X_{7,6} + X_{1,6}X_{3,4}X_{5,8}X_{7,2} - X_{1,8}X_{3,6}X_{5,2}X_{7,4} - X_{1,4}X_{3,6}X_{5,8}X_{7,2} + X_{1,6}X_{3,8}X_{5,2}X_{7,4}$$

Definition (KW11a)

 $X_{i,j} = \frac{Z^{D}(G_{i,j}^{BW})}{Z^{D}(G^{BW})}$, where $G^{BW} \subseteq G$ only contains nodes that are black and odd or white and even.

- 一司

11 / 33

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

12 / 33

• Each term in $\widehat{\Pr}(\sigma)$ is of the form $X_{\tau} := \prod_{(i,j)\in\tau} X_{i,j}$, where τ is an odd-even pairing.

• Each term in
$$\widehat{\Pr}(\sigma)$$
 is of the form
 $X_{\tau} := \prod_{(i,j)\in \tau} X_{i,j}$, where τ is an odd-even pairing.

 Kenyon and Wilson made a simplifying assumption that all nodes are black and odd or white and even.

• Each term in
$$\widehat{\Pr}(\sigma)$$
 is of the form
 $X_{\tau} := \prod_{(i,j)\in \tau} X_{i,j}$, where τ is an odd-even pairing.

 Kenyon and Wilson made a simplifying assumption that all nodes are black and odd or white and even.

Theorem (KW11a, Theorem 1.3)

 $\widehat{Pr}(\sigma)$ is an integer-coeff homogeneous polynomial in the quantities $X_{i,j}$
Theorem (KW09, Theorem 6.1)

When σ is a tripartite pairing,

 $\widehat{Pr}(\sigma) = \det[1_{i,j \text{ RGB-colored differently }} X_{i,j}]_{j=\sigma(1),\sigma(3),\dots,\sigma(2n-1)}^{i=1,3,\dots,2n-1}.$

Theorem (KW09, Theorem 6.1)

When σ is a tripartite pairing,

1

 $\widehat{Pr}(\sigma) = \det[1_{i,j \text{ RGB-colored differently }} X_{i,j}]_{j=\sigma(1),\sigma(3),\dots,\sigma(2n-1)}^{i=1,3,\dots,2n-1}.$

$$\widehat{\Pr}(\sigma) := \frac{Z_{\sigma}^{DD}(G, \mathbf{N})}{(Z^{D}(G^{BW}))^{2}}, \text{ the idea of the proof is to combine K-W's matrix with the Desnanot-Jacobi identity:}$$

$$\det(M)\det(M^{i,j}_{i,j})=\det(M^i_i)\det(M^j_j)-\det(M^j_i)\det(M^j_j)$$

(★ 直 ▶ | ★ 直 ▶ |

Example

 $Z_{\sigma}^{DD}(\mathbf{N})Z_{\sigma_{1258}}^{DD}(\mathbf{N}-1,2,5,8) = Z_{\sigma_{12}}^{DD}(\mathbf{N}-1,2)Z_{\sigma_{58}}^{DD}(\mathbf{N}-5,8) + Z_{\sigma_{18}}^{DD}(\mathbf{N}-1,8)Z_{\sigma_{25}}^{DD}(\mathbf{N}-2,5)$

$$M = \begin{pmatrix} X_{1,3} & X_{1,4} & 0 & X_{1,6} \\ X_{3,8} & X_{3,4} & 0 & X_{3,6} \\ X_{5,8} & 0 & X_{5,2} & 0 \\ 0 & X_{7,4} & X_{7,2} & X_{7,6} \end{pmatrix}$$

・ロト ・聞 ト ・ 臣 ト ・ 臣 ト … 臣

Example

 $Z_{\sigma}^{DD}(\mathbf{N})Z_{\sigma_{1258}}^{DD}(\mathbf{N}-1,2,5,8) = Z_{\sigma_{12}}^{DD}(\mathbf{N}-1,2)Z_{\sigma_{58}}^{DD}(\mathbf{N}-5,8) + Z_{\sigma_{18}}^{DD}(\mathbf{N}-1,8)Z_{\sigma_{25}}^{DD}(\mathbf{N}-2,5)$

 $M = \begin{pmatrix} X_{1,8} & X_{1,4} & 0 & X_{1,6} \\ X_{3,8} & X_{3,4} & 0 & X_{3,6} \\ X_{5,8} & 0 & X_{5,2} & 0 \\ 0 & X_{7,4} & X_{7,2} & X_{7,6} \end{pmatrix}$

 $\det(M) \det(M_{1,3}^{1,3}) = \det(M_1^1) \det(M_3^3) - \det(M_1^3) \det(M_3^1)$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ― 臣 – ∽��♡

Example

 $Z_{\sigma}^{DD}(\mathbf{N})Z_{\sigma_{1258}}^{DD}(\mathbf{N}-1,2,5,8) = Z_{\sigma_{12}}^{DD}(\mathbf{N}-1,2)Z_{\sigma_{58}}^{DD}(\mathbf{N}-5,8) + Z_{\sigma_{18}}^{DD}(\mathbf{N}-1,8)Z_{\sigma_{25}}^{DD}(\mathbf{N}-2,5)$

 $\begin{array}{c} 7 & - 6 & - 5 \\ 0 & - 7 & - 6 & - 7 \\ 0 & - 7 & - 7 & - 6 & - 7 \\ 0 & - 7 & - 7 & - 6 & - 7 \\ 0 & - 7 & - 7 & - 6 & - 7 \\ 0 & - 7 & - 7 & - 6 & - 7 \\ 0 & - 7 & - 7 & - 7 & - 6 & - 7 \\ 0 & - 7 & - 7 & - 7 & - 6 & - 7 \\ 0 & - 7 & - 7 & - 7 \\ 0 & - 7 & - 7 & - 7 \\ 0 & - 7 & - 7$ $M = \begin{pmatrix} X_{1,8} & X_{1,4} & 0 & X_{1,6} \\ X_{3,8} & X_{3,4} & 0 & X_{3,6} \\ X_{5,8} & 0 & X_{5,2} & 0 \\ 0 & X_{7,4} & X_{7,2} & X_{7,6} \end{pmatrix}$ $\det(M) \det(M_{1,3}^{1,3}) = \det(M_1^1) \det(M_3^3) - \det(M_1^3) \det(M_3^1)$ $\det(M) = \frac{Z_{\sigma}^{DD}(\mathbf{N})}{(Z^{D}(G^{BW}))^{2}} \qquad \checkmark$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ― 臣 – ∽��♡

$$\det(M_3^3) \stackrel{?}{=} \frac{Z_{\sigma_2}^{DD}(G, \mathbf{N} - \{2, 5\})}{(Z^D(G^{BW}))^2}, \text{ where } M_3^3 = \begin{pmatrix} X_{1,8} & X_{1,4} & X_{1,6} \\ X_{3,8} & X_{3,4} & X_{3,6} \\ 0 & X_{7,4} & X_{7,6} \end{pmatrix}$$

• The nodes are not numbered consecutively.

æ

- ∢ ∃ →

$$\det(M_3^3) \stackrel{?}{=} \frac{Z^{DD}_{\sigma_2}(G, \mathbf{N} - \{2, 5\})}{(Z^D(G^{BW}))^2}, \text{ where } M_3^3 = \begin{pmatrix} X_{1,8} & X_{1,4} & X_{1,6} \\ X_{3,8} & X_{3,4} & X_{3,6} \\ 0 & X_{7,4} & X_{7,6} \end{pmatrix}$$

- Relabel the nodes.
- Node 2 is black and node 3 is white.

• Add edges of weight 1 to nodes 2 and 3.

• • = • • = •

- Add edges of weight 1 to nodes 2 and 3.
- Since $X_{i,j} = \frac{Z^D(G_{i,j}^{BW})}{Z^D(G^{BW})}$, the K-W matrix for this new graph will have different entries!

- Add edges of weight 1 to nodes 2 and 3.
- Since $X_{i,j} = \frac{Z^D(G_{i,j}^{BW})}{Z^D(G^{BW})}$, the K-W matrix for this new graph will have different entries!

Observation. We need to lift the assumption that the nodes of the graph are black and odd or white and even.

• When the nodes are black and odd or white and even, $G = G^{BW}$, so $X_{i,j} = \frac{Z^D(G_{i,j}^{BW})}{Z^D(G^{BW})} = \frac{Z^D(G_{i,j})}{Z^D(G)}.$

- When the nodes are black and odd or white and even, $G = G^{BW}$, so $X_{i,j} = \frac{Z^D(G_{i,j}^{BW})}{Z^D(G^{BW})} = \frac{Z^D(G_{i,j})}{Z^D(G)}.$ • Let $Y_{i,j} = \frac{Z^D(G_{i,j})}{Z^D(G)}$ and let $\widetilde{\Pr}(\sigma) = \frac{Z^{DD}_{\sigma}(G)}{(Z^D(G))^2}$
- We establish analogues of K-W without their node coloring constraint.

- When the nodes are black and odd or white and even, G = G^{BW}, so X_{i,j} = Z^D(G^{BW})/Z^D(G^{BW}) = Z^D(G_{i,j})/Z^D(G).
 Let Y_{i,j} = Z^D(G_{i,j})/Z^D(G) and let P̃r(σ) = Z^{DD}(G)/(Z^D(G))²
- We establish analogues of K-W without their node coloring constraint.

$$\widehat{\mathsf{Pr}} \begin{pmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{pmatrix} = X_{1,4} X_{2,5} X_{3,6} + X_{1,2} X_{3,4} X_{5,6}$$
$$\widetilde{\mathsf{Pr}} \begin{pmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{pmatrix} = Y_{1,3} Y_{2,5} Y_{4,6} + Y_{1,5} Y_{2,6} Y_{4,3}$$

- When the nodes are black and odd or white and even, G = G^{BW}, so X_{i,j} = Z^D(G^{BW})/Z^D(G^{BW}) = Z^D(G_{i,j})/Z^D(G).
 Let Y_{i,j} = Z^D(G_{i,j})/Z^D(G) and let P̃r(σ) = Z^{DD}(G)/(Z^D(G))²
- We establish analogues of K-W without their node coloring constraint.

X_{i,j} = 0 if i and j are the same parity
Y_{i,j} = 0 if i and j are the same color

• Each term in $\widehat{\Pr}(\sigma)$ is of the form $X_{\tau} := \prod_{(i,j)\in \tau} X_{i,j}$, where τ is an odd-even pairing.

• Each term in $Pr(\sigma)$ is of the form

 $Y_{
ho} := \prod_{(i,j) \in
ho} Y_{i,j}$, where ho is an black-white pairing.

Lemma (KW11a, Lemma 3.4)

For odd-even pairings ρ ,

$$sign_{OE}(
ho) \prod_{(i,j) \in
ho} (-1)^{(|i-j|-1)/2} = (-1)^{\# \ crosses \ of \
ho}$$

Lemma (KW11a, Lemma 3.4)

For odd-even pairings ρ ,

$$\mathsf{sign}_{\mathsf{OE}}(
ho) \prod_{(i,j)\in
ho} (-1)^{(|i-j|-1)/2} = (-1)^{\# ext{ crosses of }
ho}$$

We need a version of this for black-white pairings.

Lemma (KW11a, Lemma 3.4)

For odd-even pairings ρ ,

$${\it sign}_{{\it OE}}(
ho) \prod_{(i,j) \in
ho} (-1)^{(|i-j|-1)/2} = (-1)^{\# \ {\it crosses \ of \ }
ho}$$

We need a version of this for black-white pairings.

Example (sign_{OE}(ρ))

If
$$\rho = \begin{pmatrix} 1 & 3 & 5 \\ 6 & 2 & 4 \end{pmatrix}$$
, then sign_{*OE*}(ρ) is the parity of $\begin{pmatrix} 6 & 2 & 4 \\ 2 & 2 & 4 \end{pmatrix} = \begin{pmatrix} 3 & 1 & 2 \end{pmatrix}$

Lemma (KW11a, Lemma 3.4)

For odd-even pairings ρ ,

$${\it sign}_{{\it OE}}(
ho) \prod_{(i,j) \in
ho} (-1)^{(|i-j|-1)/2} = (-1)^{\# \ {\it crosses \ of \ }
ho}$$

We need a version of this for black-white pairings. Example $(sign_{OF}(\rho))$

If
$$\rho = \begin{pmatrix} 1 & 3 & 5 \\ 6 & 2 & 4 \end{pmatrix}$$
, then sign_{OE}(ρ) is the parity of $\begin{pmatrix} 6 & 2 & 4 \\ 2 & 2 & 2 \end{pmatrix} = \begin{pmatrix} 3 & 1 & 2 \end{pmatrix}$

When ρ is black-white, we define sign(ρ) similarly.

Example

$$\begin{array}{c}2\\3\\4\\5\end{array}$$

If
$$\rho = \begin{pmatrix} 1 & 2 & 3 & 6 \\ 7 & 8 & 4 & 5 \end{pmatrix}$$
, sign_{BW}(ρ) is the sign of (3 4 1 2).

Lemma (KW11a, Lemma 3.4)

For odd-even pairings ρ ,

$$sign_{OE}(
ho) \prod_{(i,j) \in
ho} (-1)^{(|i-j|-1)/2} = (-1)^{\# \ crosses \ of \
ho}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ― 臣 … のへの

Lemma (KW11a, Lemma 3.4)

For odd-even pairings ρ ,

$$sign_{OE}(\rho) \prod_{(i,j) \in \rho} (-1)^{(|i-j|-1)/2} = (-1)^{\# \text{ crosses of } \rho}$$

Definition

If (i,j) is a pair in a black-white pairing, let $\mathrm{sign}(i,j) = (-1)^{(|i-j|+a_{i,j}-1)/2}$

$$a_{7,3} = 1$$
, so sign $(7,3) = (-1)^{(|7-3|+1-1)/2} = 1$
 $a_{8,3} = 2$, so sign $(8,3) = (-1)^{(|8-3|+2-1)/2} = -1$

Lemma (KW11a, Lemma 3.4)

For odd-even pairings ρ ,

$$sign_{OE}(\rho) \prod_{(i,j)\in\rho} (-1)^{(|i-j|-1)/2} = (-1)^{\# crosses of
ho}$$

Definition

If (i,j) is a pair in a black-white pairing, let sign $(i,j) = (-1)^{(|i-j|+a_{i,j}-1)/2}$

$$a_{7,3} = 1, \text{ so sign}(7,3) = (-1)^{(|7-3|+1-1)/2} = 1$$

$$a_{8,3} = 2, \text{ so sign}(8,3) = (-1)^{(|8-3|+2-1)/2} = -1$$

Lemma (J.) If ρ is a black-white pairing, $sign_{c}(\mathbf{N})sign_{BW}(\rho) \prod_{(i,j) \in \rho} sign(i,j) = (-1)^{\# crosses of \rho}.$

Theorem (KW09, Theorem 6.1)

When σ is a tripartite pairing,

$$\widehat{\Pr}(\sigma) = \det[1_{i,j \ RGB\text{-colored differently}} X_{i,j}]_{j=\sigma(1),\sigma(3),\dots,\sigma(2n-1)}^{i=1,3,\dots,2n-1} \\ = \operatorname{sign}_{OE}(\sigma) \det[1_{i,j \ RGB\text{-colored diff}} X_{i,j}]_{j=2,4,\dots,2n}^{i=1,3,\dots,2n-1}$$

Theorem (KW09, Theorem 6.1)

When σ is a tripartite pairing,

$$\begin{split} \widehat{Pr}(\sigma) &= \det[1_{i,j \ RGB\text{-}colored \ differently} \ X_{i,j}]_{j=\sigma(1),\sigma(3),\dots,\sigma(2n-1)}^{i=1,3,\dots,2n-1} \\ &= \ sign_{OE}(\sigma) \det[1_{i,j \ RGB\text{-}colored \ diff} \ X_{i,j}]_{j=2,4,\dots,2n}^{i=1,3,\dots,2n-1} \end{split}$$

Theorem (J.)

When σ is a tripartite pairing,

$$\widetilde{\mathsf{Pr}}(\sigma) = sign_{\mathsf{OE}}(\sigma) \det[1_{i,j \ \mathsf{RGB-colored} \ differently} \ Y_{i,j}]_{j=w_1,w_2,...,w_n}^{i=b_1,b_2,...,b_n}.$$

More general result

Theorem (J.)

Divide **N** into sets *R*, *G*, and *B* and let σ be the corr. tripartite pairing. Let $x, y, w, v \in \mathbf{N}$ such that $x < w \in V_1$ and $y < v \in V_2$. Then

 $sign_{OE}(\sigma)sign_{OE}(\sigma'_{xywv})Z^{DD}_{\sigma}(G, \mathbf{N})Z^{DD}_{\sigma_{xywv}}(G, \mathbf{N} - \{x, y, w, v\})$ $= sign_{OE}(\sigma'_{xy})sign_{OE}(\sigma'_{wv})Z^{DD}_{\sigma_{xy}}(G, \mathbf{N} - \{x, y\})Z^{DD}_{\sigma_{wv}}(G, \mathbf{N} - \{w, v\})$ $-sign_{OE}(\sigma'_{xv})sign_{OE}(\sigma'_{wy})Z^{DD}_{\sigma_{xv}}(G, \mathbf{N} - \{x, v\})Z^{DD}_{\sigma_{wy}}(G, \mathbf{N} - \{w, y\})$

More general result

Theorem (J.)

Divide **N** into sets *R*, *G*, and *B* and let σ be the corr. tripartite pairing. Let $x, y, w, v \in \mathbf{N}$ such that $x < w \in V_1$ and $y < v \in V_2$. Then

$$sign_{OE}(\sigma)sign_{OE}(\sigma'_{xywv})Z^{DD}_{\sigma}(G, \mathbf{N})Z^{DD}_{\sigma_{xywv}}(G, \mathbf{N} - \{x, y, w, v\})$$

$$sign_{OE}(\sigma'_{xy})sign_{OE}(\sigma'_{wv})Z^{DD}_{\sigma_{xy}}(G, \mathbf{N} - \{x, y\})Z^{DD}_{\sigma_{wv}}(G, \mathbf{N} - \{w, v\})$$

$$-sign_{OE}(\sigma'_{xv})sign_{OE}(\sigma'_{wy})Z^{DD}_{\sigma_{xv}}(G, \mathbf{N} - \{x, v\})Z^{DD}_{\sigma_{wy}}(G, \mathbf{N} - \{w, y\})$$

Corollary

Divide **N** into sets *R*, *G*, and *B* and let σ be the corr. tripartite pairing. Let $x, y, w, v \in \mathbf{N}$ such that $x < w \in V_1$ and $y < v \in V_2$. If $\{x, y, w, v\}$ contains at least one node of each *RGB* color and x, y, w, v appear in cyclic order then $Z_{\sigma}^{DD}(G, \mathbf{N})Z_{\sigma_{xywv}}^{DD}(G, \mathbf{N} - \{x, y, w, v\}) = Z_{\sigma_{xy}}^{DD}(G, \mathbf{N} - \{x, y\})Z_{\sigma_{wy}}^{DD}(G, \mathbf{N} - \{w, v\}) + Z_{\sigma_{xv}}^{DD}(G, \mathbf{N} - \{x, v\})Z_{\sigma_{wy}}^{DD}(G, \mathbf{N} - \{w, v\})$

Application: the dP_3 Quiver

Object of study. The dP_3 quiver¹ and its associated cluster algebra.

Goal. Understand combinatorial interpretations for *toric cluster variables* obtained from sequences of *mutations*.

22 / 33

Main result. [LMNT, LM17, LM20] In many cases, the Laurent expansion of the toric cluster variables is equal to the partition function for a certain subgraph of the dP_3 lattice (with appropriate edge-weights).

¹ The quiver Q associated with the Calabi-Yau threefold complex cone over the third del Pezzo surface of degree 6 (\mathbb{CP}^2 blown up at three points). Images shown are Figures 1 and 2 from T. Lai and G. Musiker, *Dungeons and Dragons: Combinatorics for the dP*₃ *Quiver*

A quiver Q is a directed finite graph.

A quiver Q is a directed finite graph.

Definition (Mutation at a vertex *i*)

- For every 2-path $j \rightarrow i \rightarrow k$, add $j \rightarrow k$
- Reverse all arrows incident to i
- Delete 2-cycles

A quiver Q is a directed finite graph.

Definition (Mutation at a vertex *i*)

- For every 2-path $j \rightarrow i \rightarrow k$, add $j \rightarrow k$
- Reverse all arrows incident to i
- Delete 2-cycles

A quiver Q is a directed finite graph.

Definition (Mutation at a vertex *i*)

- For every 2-path $j \rightarrow i \rightarrow k$, add $j \rightarrow k$
- Reverse all arrows incident to i
- Delete 2-cycles

- Define a cluster algebra from a quiver *Q* by associating a cluster variable *x_i* to every vertex labeled *i*.
- When we mutate at vertex *i* we replace x_i with x'_i , where

$$x'_{i} = \frac{\prod\limits_{i \to j \text{ in } Q} x_{j}^{a_{i \to j}} + \prod\limits_{j \to i \text{ in } Q} x_{j}^{b_{j \to i}}}{x_{i}}$$

• When we mutate at vertex 1 we replace x_1 with $x'_1 = \frac{x_4x_6 + x_3x_5}{x_1}$. Now we have the cluster: $\{\frac{x_4x_6 + x_3x_5}{x_1}, x_2, x_3, \dots, x_6\}$

Theorem (FZ02)

Every cluster variable is a Laurent polynomial in x_1, \ldots, x_n .

Theorem (FZ02)

Every cluster variable is a Laurent polynomial in x_1, \ldots, x_n .

A *toric mutation* is a mutation at a vertex with both in-degree and out-degree 2.

Image shown is Figure 2 from T. Lai and G. Musiker, *Dungeons and Dragons: Combinatorics for* the dP_3 Quiver $\Box \mapsto \langle \Box \rangle + \langle \Box \rangle + \langle \Xi \rangle$

Combinatorial formula for some toric cluster variables

Example. (Z12) Toric cluster variables from the periodic mutation 1, 2, 3, 4, 5, 6, 1, 2, ... agree with partition functions for subgraphs of the dP_3 lattice with appropriate edge weights (the edge bordering faces *i* and *j* has weight $\frac{1}{x_{(X)}}$).

 Δ

$$\sum_{x_1} \sum_{x_1} \frac{x_4 x_6 + x_3 x_5}{x_1} = \left(\frac{1}{x_1^2 x_3 x_5} + \frac{1}{x_1^2 x_4 x_6}\right) x_1 x_3 x_4 x_5 x_6 = Z^D(G)m(G)$$

These subgraphs are Aztec Dragons (see for example CY10).

\mathbb{Z}^3 parameterization for toric cluster variables and an algebraic formula

Lai and Musiker (LM17) showed that the set of toric cluster variables is parameterized by \mathbb{Z}^3 .

Let $z_{i,j,k}$ denote the toric cluster variable corresponding to $(i,j,k) \in \mathbb{Z}^3$.

Theorem (LM17)
Let
$$A = \frac{x_3x_5 + x_4x_6}{x_1x_2}$$
, $B = \frac{x_1x_6 + x_2x_5}{x_3x_4}$, $C = \frac{x_1x_3 + x_2x_4}{x_5x_6}$, $D = \frac{x_1x_3x_6 + x_2x_3x_5 + x_2x_4x_6}{x_1x_4x_5}$, $E = \frac{x_2x_4x_5 + x_1x_3x_5 + x_1x_4x_6}{x_2x_3x_6}$. Then
 $z_{i,j,k} = x_r A^{\lfloor \frac{(i^2 + ij + j^2 + 1) + i + 2j}{3} \rfloor} B^{\lfloor \frac{(i^2 + ij + j^2 + 1) + 2i + j}{3} \rfloor} C^{\lfloor \frac{i^2 + ij + j^2 + 1}{3} \rfloor} D^{\lfloor \frac{(k-1)^2}{4} \rfloor} E^{\lfloor \frac{k^2}{4} \rfloor}$
 x_r is an initial cluster variable with r depending on $(i - j) \mod 3$ and $k \mod 2$.

Combinatorial interpretation of $z_{i,j,k}$

Map from \mathbb{Z}^3 to \mathbb{Z}^6 :

 $(i, j, k) \rightarrow (a, b, c, d, e, f) = (j + k, -i - j - k, i + k, j - k + 1, -i - j + k - 1, i - k + 1)$

Given a six-tuple $(a, b, c, d, e, f) \in \mathbb{Z}^6$, superimpose the contour C(a, b, c, d, e, f) on the dP_3 lattice. Magnitude determines length and sign determines direction.

Examples:

Combinatorial interpretation of $z_{i,j,k}$

Some possible shapes of the contours:

Theorem (LM17)

Let G be the subgraph cut out by the contour (a, b, c, d, e, f) = (j + k, -i - j - k, i + k, j - k + 1, -i - j + k - 1, i - k + 1).As long as C(a, b, c, d, e, f) has no self-intersections,

$$z_{i,j,k} = Z^D(G)m(G)$$

Combinatorial interpretation of $z_{i,j,k}$

Some possible shapes of the contours:

Theorem (LM17)

Let G be the subgraph cut out by the contour (a, b, c, d, e, f) = (j + k, -i - j - k, i + k, j - k + 1, -i - j + k - 1, i - k + 1).As long as C(a, b, c, d, e, f) has no self-intersections,

$$z_{i,j,k}=Z^D(G)m(G)$$

What about when C(a, b, c, d, e, f) is self-intersecting?

Image shown is Figure 12 from T. Lai and G. Musiker, Beyond Aztec Castles: Toric cascades in the dP₃ Quiver

Cross-section when k is positive

Figure 20 from T. Lai and G. Musiker, Beyond Aztec Castles: Toric cascades in the dP3 Quiver, or

Combinatorial interpretation for self-intersecting contours

Theorem (J.-Lai-Musiker 2020+)

For the dP_3 quiver, we complete the assignment of combinatorial interpretations to toric cluster variables. In particular, for (i, j, k) corresponding to a self-intersecting contour we express $z_{i,j,k}$ as a partition function for a tripartite double-dimer configuration.

Sketch of proof for self-intersecting contours

Our proof uses a bijection between dimers and double dimers, the dimer interpretations of LM17 as a base case, and then proceeds by induction via double-dimer condensation.

 $\begin{aligned} z_{-1,-2,4} \cdot z_{0,-2,2} &= z_{-1,2,3} \cdot z_{0,-2,3} + z_{-1,-1,3} \cdot z_{0,-3,3} \\ Z_{\sigma}^{DD}(G, \mathbf{N}) Z_{\sigma_5}^{DD}(G - ACEF, \mathbf{N} - ACEF) &= Z_{\sigma_1}^{DD}(G - AC, \mathbf{N} - AC) Z_{\sigma_2}^{DD}(G - EF, \mathbf{N} - EF) \\ &+ Z_{\sigma_3}^{DD}(G - CE, \mathbf{N} - CE) Z_{\sigma_4}^{DD}(G - AF, \mathbf{N} - AF) \end{aligned}$

くロト く伺下 くまト くまト

Thank you for listening!

- C. Cottrell and B. Young. Domino shuffling for the Del Pezzo 3 lattice. October 2010. arXiv:1011.0045.
- N. Elkies, G. Kuperberg, M. Larsen, and J. Propp. Alternating-Sign matrices and Domino Tilings (Part I). *J. Algebraic Combin.* 1(2):111-132, 1992.
- M. Fulmek, Graphical condensation, overlapping Pfaffians and superpositions of matchings. *Electron. J. Comb.*, 17, 2010.
- H. Jenne. Combinatorics of the double-dimer model. *arXiv preprint arXiv:1911.04079*, 2019.
- R. W. Kenyon and D. B. Wilson. Combinatorics of tripartite boundary connections for trees and dimers. *Electron. J Comb.*, 16(1), 2009.
- R. W. Kenyon and David B. Wilson. Boundary partitions in trees and dimers. *Trans. Amer. Math. Soc.*, 363(3):1325-1364, 2011.
- E. H. Kuo. Applications of graphical condensation for enumerating matchings and tilings. *Theoret. Comput. Sci.*, 319(1-3):29-57, 2004.
- T. Lai and G. Musiker. Beyond Aztec castles: toric cascades in the dP_3 quiver. *Comm. Math. Phys.*, 356(3):823-881, 2017.
- T. Lai and G. Musiker. Dungeons and Dragons: Combinatorics for the dP_3 Quiver. Annals of Combinatorics, Volume 24 (2020), no. 2, 257–309.
- M. Leoni, G. Musiker, S. Neel, and P. Turner. Aztec Castles and the dP_3 Quiver, Journal of Physics A: Math. Theor. 47 474011.
- D. E. Speyer. Variations on a theme of Kasteleyn, with Application to the Totally Nonnegative Grassmannian. *Electron. J. Comb.*, 23(2), 2016.
- S. Zhang, Cluster Variables and Perfect Matchings of Subgraphs of the *dP*₃ Lattice, 2012 REU Report, arXiv:1511.06055.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで