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Kuo condensation

Today G = (V1,V2,E ) is a finite bipartite planar graph.

Let ZD(G ) denote the partition function.

ZD(G ) = xyz + x + z x y z

Theorem (Kuo04, Theorem 5.1)

Let vertices a, b, c , and d appear in a cyclic order on a face of G . If
a, c ∈ V1 and b, d ∈ V2, then

ZD(G)ZD(G−{a,b,c ,d})=ZD(G−{a,b})ZD(G−{c ,d})+ZD(G−{a,d})ZD(G−{b,c})
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Kuo Condensation

Theorem (Kuo04, Theorem 5.1)

Let vertices a, b, c , and d appear in a cyclic order on a face of G . If
a, c ∈ V1 and b, d ∈ V2, then

ZD(G)ZD(G−{a,b,c ,d})=ZD(G−{a,b})ZD(G−{c ,d})+ZD(G−{a,d})ZD(G−{b,c})

Examples of non-bijective proofs:

Fulmek, Graphical condensation, overlapping Pfaffians and superpositions of
Matchings

Speyer, Variations on a theme of Kasteleyn, with Application to the TNN
Grassmannian

Theorem (Desnanot-Jacobi identity/Dodgson condensation)

det(M) det(M i ,j
i ,j ) = det(M i

i ) det(M j
j )− det(M j

i ) det(M i
j )

M j
i is the matrix M with the ith row and the jth column removed.
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Applications of Kuo’s work

Tiling enumeration
• New proof that there are
2n(n+1)/2 ways to tile the
order-n Aztec diamond
(EKLP92)
• New proof of MacMahon’s
product formula for the
generating function for plane
partitions π ⊆ B(r , s, t)

Cluster algebras
(LM17, LM20) Combinatorial
interpretation of toric cluster
variables for the dP3 quiver

Main result. An analogue of Kuo’s theorem for double-dimer configs.

Application: Building on LM17 and LM20, give combinatorial
interpretations of toric cluster variables for the dP3 quiver in the case
where the single dimer model was not sufficient (joint work with Lai and
Musiker).
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Double-dimer configurations

N is a set of special vertices called nodes on the outer face of G .

Definition (Double-dimer configuration on (G ,N))

1 2 3

4

567

8

Configuration of

` disjoint loops

Doubled edges

Paths connecting nodes in pairs

Its weight is the product of its edge weights × 2`

1 2 3

4

567

8
=

1 2 3

4

567

8
+
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Tripartite pairings

Definition (Tripartite pairing)

A planar pairing σ of N is tripartite if the nodes can be divided into ≤ 3
sets of circularly consecutive nodes so that no node is paired with a node
in the same set.

123

4

5
6

7 8 9
10
11

12

Tripartite

12

3

4

5

6 7 8

9

10

11

12

Not tripartite

We often color the nodes in the sets red, green, and blue, in which case σ
has no monochromatic pairs.

Dividing nodes into three sets R,G , and B defines a tripartite pairing.
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Main Result

ZDD
σ (G ,N) denotes the weighted sum of all DD config with pairing σ.

Theorem (J.)

Divide N into sets R, G , and B and let σ be the corr. tripartite pairing.
Let x , y ,w , v ∈ N such that x < w ∈ V1 and y < v ∈ V2. If {x , y ,w , v}
contains at least one node of each RGB color and x , y ,w , v appear in
cyclic order then
ZDD
σ (G ,N)ZDD

σxywv
(G ,N− {x , y ,w , v}) =

ZDD
σxy

(G ,N−{x , y})ZDD
σwv

(G ,N−{w , v}) + ZDD
σxv

(G ,N−{x , v})ZDD
σwy

(G ,N−{w , y})

Example.

ZDD
σ (N)ZDD

σ1258
(N−1, 2, 5, 8) = ZDD

σ12
(N−1, 2)ZDD

σ58
(N−5, 8) +ZDD

σ18
(N−1, 8)ZDD

σ25
(N−2, 5)

1 2 3

4

567

8

3

4

67

3

4

567

8

1 2 3

4

67

2 3

4

567

1 3

4

67

8

We only need the two nodes of the same RGB color to be opposite in BW color.
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Corollaries

Theorem (Kuo04, Theorem 5.1)

a

b

c
d

Let vertices a, b, c , and d appear in a cyclic order on a face of
G . If a, c ∈ V1 and b, d ∈ V2, then

ZD(G)ZD(G−{a,b,c ,d})=ZD(G−{a,b})ZD(G−{c ,d})+ZD(G−{a,d})ZD(G−{b,c})

Theorem (J.)

Let x , y ,w , v ∈ N such that x < w ∈ V1 and
y < v ∈ V2. If {x , y ,w , v} contains at least one node
of each RGB color and the two nodes of the same RGB
color are opposite in BW color then
ZDD
σ (G ,N)ZDD

σxywv
(G − {x , y ,w , v},N− {x , y ,w , v}) =

ZDD
σxy

(G − {x , y},N− {x , y})ZDD
σwv

(G − {w , v},N− {w , v}) +

ZDD
σxv

(G − {x , v},N− {x , v})ZDD
σwy

(G − {w , y},N− {w , y})
1 2 3

4

5
67

8
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Corollaries

Theorem (Kuo04, Theorem 5.2)

a

c b

d Let vertices a, c, b, and d appear in a cyclic order on a face of
G . If a, c ∈ V1 and b, d ∈ V2, then

ZD(G)ZD(G−{a,b,c ,d})=ZD(G−{a,d})ZD(G−{b,c})−ZD(G−{a,b})ZD(G−{c ,d})

Theorem (J.)

Let x , y ,w , v ∈ N such that x < w ∈ V1 and y < v ∈ V2. If {x , y ,w , v}
contains at least one node of each RGB color and the two nodes of the
same RGB color are the same in BW color then

ZDD
σ (G ,N)ZDD

σxywv
(G − {x , y ,w , v},N− {x , y ,w , v}) =

ZDD
σxy

(G − {x , y},N− {x , y})ZDD
σwv

(G − {w , v},N− {w , v})−
ZDD
σxv

(G − {x , v},N− {x , v})ZDD
σwy

(G − {w , y},N− {w , y})
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Background: Double-dimer pairing probabilities

1
2

3
4

5

6

P̂r
(

1 3 5
2 4 6

)
= X1,4X2,5X3,6 + X1,2X3,4X5,6

P̂r
(

1 3 5 7
8 4 2 6

)
= X1,8X3,4X5,2X7,6 − X1,4X3,8X5,2X7,6 + X1,6X3,4X5,8X7,2

−X1,8X3,6X5,2X7,4 − X1,4X3,6X5,8X7,2 + X1,6X3,8X5,2X7,4

Definition (KW11a)

Xi ,j =
ZD(GBW

i,j )

ZD(GBW )
, where GBW ⊆ G only contains nodes that are black and

odd or white and even.

G = GBW

1

2

3

4

G

1

2 3

4

GBW

1 4

GBW
1,2

2

4

GBW
2,4

1

2
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P̂r
(

1 3 5 7
8 4 2 6

)
= X1,8X3,4X5,2X7,6 − X1,4X3,8X5,2X7,6 + X1,6X3,4X5,8X7,2

−X1,8X3,6X5,2X7,4 − X1,4X3,6X5,8X7,2 + X1,6X3,8X5,2X7,4

Definition (KW11a)

Xi ,j =
ZD(GBW

i,j )

ZD(GBW )
, where GBW ⊆ G only contains nodes that are black and

odd or white and even.

G = GBW

1

2

3

4

G

1

2 3

4

GBW

1 4

GBW
1,2

2

4

GBW
2,4

1

2
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Xi ,j = 0 if i and j have the same parity

1
2

3

4
5

6

7

8
1

2

3

4
5

6

7

8
1

2

3

4
5

6

7

8

P̂r
(

1 3 5 7
8 4 2 6

)
= X1,8X3,4X5,2X7,6 − X1,4X3,8X5,2X7,6 + X1,6X3,4X5,8X7,2

−X1,8X3,6X5,2X7,4 − X1,4X3,6X5,8X7,2 + X1,6X3,8X5,2X7,4

Each term in P̂r(σ) is of the form

Xτ :=
∏

(i ,j)∈τ
Xi ,j , where τ is an odd-even pairing.

Kenyon and Wilson made a simplifying assumption that all nodes are
black and odd or white and even.

Theorem (KW11a, Theorem 1.3)

P̂r(σ) is an integer-coeff homogeneous polynomial in the quantities Xi ,j
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Background: Determinant formula

Theorem (KW09, Theorem 6.1)

When σ is a tripartite pairing,

P̂r(σ) = det[1i ,j RGB-colored differently Xi ,j ]
i=1,3,...,2n−1
j=σ(1),σ(3),...,σ(2n−1).

1
2

3
4

5

6

P̂r
(

1 3 5
6 2 4

)
=

∣∣∣∣∣∣
X1,6 0 X1,4

X3,6 X3,2 0
0 X5,2 X5,4

∣∣∣∣∣∣

Since P̂r(σ) :=
ZDD
σ (G ,N)

(ZD(GBW ))2
, the idea of the proof is to combine K-W’s

matrix with the Desnanot-Jacobi identity:

det(M) det(M i ,j
i ,j ) = det(M i

i ) det(M j
j )− det(M j

i ) det(M i
j )
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Example

ZDD
σ (N)ZDD

σ1258
(N−1, 2, 5, 8) = ZDD

σ12
(N−1, 2)ZDD

σ58
(N−5, 8) +ZDD

σ18
(N−1, 8)ZDD

σ25
(N−2, 5)

1 2 3

4

567

8

3

4

67

3

4

567

8

1 2 3

4

67

2 3

4

567

1 3

4

67

8

M =

X1,8 X1,4 0 X1,6

X3,8 X3,4 0 X3,6

X5,8 0 X5,2 0
0 X7,4 X7,2 X7,6



det(M) det(M1,3
1,3 ) = det(M1

1 ) det(M3
3 )− det(M3

1 ) det(M1
3 )

det(M) =
ZDD
σ (N)

(ZD(GBW ))2
"
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det(M3
3 )

?
=

ZDD
σ2

(G ,N− {2, 5})
(ZD(GBW ))2

, where M3
3 =

X1,8 X1,4 X1,6

X3,8 X3,4 X3,6

0 X7,4 X7,6



1 3

4

67

8

1
�32

�43

�64�75

�86

1
2

3

45

6

The nodes are not numbered consecutively.

Relabel the nodes.

Node 2 is black and node 3 is white.

Add edges of weight 1 to nodes 2 and 3.

Since Xi ,j =
ZD(GBW

i,j )

ZD(GBW )
, the K-W matrix for this new graph will have

different entries!

Observation. We need to lift the assumption that the nodes of the graph
are black and odd or white and even.
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Our Approach

When the nodes are black and odd or white and even, G = GBW , so

Xi ,j =
ZD(GBW

i ,j )

ZD(GBW )
=

ZD(Gi ,j)

ZD(G )
.

Let Yi ,j =
ZD(Gi ,j)

ZD(G )
and let P̃r(σ) =

ZDD
σ (G )

(ZD(G ))2

We establish analogues of K-W without their node coloring constraint.
1

2

3
4

5

6

P̂r
(

1 3 5
2 4 6

)
= X1,4X2,5X3,6 + X1,2X3,4X5,6

1
2

3
4

5

6

P̃r
(

1 3 5
2 4 6

)
= Y1,3Y2,5Y4,6 + Y1,5Y2,6Y4,3

Xi ,j = 0 if i and j are the same parity
Yi ,j = 0 if i and j are the same color
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Each term in P̂r(σ) is of the form

Xτ :=
∏

(i ,j)∈τ
Xi ,j , where τ is an odd-even pairing.

Each term in P̃r(σ) is of the form

Yρ :=
∏

(i ,j)∈ρ
Yi ,j , where ρ is an black-white pairing.
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A disaster of signs!

Lemma (KW11a, Lemma 3.4)

For odd-even pairings ρ,

signOE (ρ)
∏

(i ,j)∈ρ

(−1)(|i−j |−1)/2 = (−1)# crosses of ρ.

We need a version of this for black-white pairings.

Example (signOE (ρ))

If ρ =
(

1 3 5
6 2 4

)
, then signOE (ρ) is the parity of

(
6
2

2
2

4
2

)
=
(
3 1 2

)
When ρ is black-white, we define sign(ρ) similarly.

Example
1

2

3

4
5

6

7

8

If ρ =
(

1 2 3 6
7 8 4 5

)
, signBW (ρ) is the sign of

(
3 4 1 2

)
.
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Lemma (KW11a, Lemma 3.4)

For odd-even pairings ρ,

signOE (ρ)
∏

(i ,j)∈ρ

(−1)(|i−j |−1)/2 = (−1)# crosses of ρ.

Definition

If (i , j) is a pair in a black-white pairing, let sign(i , j) = (−1)(|i−j |+ai,j−1)/2

1
2

3

4
5

6

7

8

a7,3 = 1, so sign(7, 3) = (−1)(|7−3|+1−1)/2 = 1

a8,3 = 2, so sign(8, 3) = (−1)(|8−3|+2−1)/2 = −1

Lemma (J.)

If ρ is a black-white pairing,

signc(N)signBW (ρ)
∏

(i ,j)∈ρ

sign(i , j) = (−1)# crosses of ρ.
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Determinant Formula

Theorem (KW09, Theorem 6.1)

When σ is a tripartite pairing,

P̂r(σ) = det[1i ,j RGB-colored differently Xi ,j ]
i=1,3,...,2n−1
j=σ(1),σ(3),...,σ(2n−1)

= signOE (σ) det[1i ,j RGB-colored diff Xi ,j ]
i=1,3,...,2n−1
j=2,4,...,2n

Theorem (J.)

When σ is a tripartite pairing,

P̃r(σ) = signOE (σ) det[1i ,j RGB-colored differently Yi ,j ]
i=b1,b2,...,bn
j=w1,w2,...,wn

.

20 / 33
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P̃r(σ) = signOE (σ) det[1i ,j RGB-colored differently Yi ,j ]
i=b1,b2,...,bn
j=w1,w2,...,wn

.
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More general result

Theorem (J.)

Divide N into sets R, G , and B and let σ be the corr. tripartite pairing.
Let x , y ,w , v ∈ N such that x < w ∈ V1 and y < v ∈ V2. Then

signOE (σ)signOE (σ′xywv )ZDD
σ (G ,N)ZDD

σxywv (G ,N− {x , y ,w , v})
= signOE (σ′xy )signOE (σ′wv )ZDD

σxy (G ,N− {x , y})ZDD
σwv (G ,N− {w , v})

−signOE (σ′xv )signOE (σ′wy )ZDD
σxv (G ,N− {x , v})ZDD

σwy (G ,N− {w , y})

Corollary

Divide N into sets R, G , and B and let σ be the corr. tripartite pairing.
Let x , y ,w , v ∈ N such that x < w ∈ V1 and y < v ∈ V2. If {x , y ,w , v}
contains at least one node of each RGB color and x , y ,w , v appear in
cyclic order then
ZDD
σ (G ,N)ZDD

σxywv
(G ,N− {x , y ,w , v}) =

ZDD
σxy

(G ,N−{x , y})ZDD
σwv

(G ,N−{w , v}) + ZDD
σxv

(G ,N−{x , v})ZDD
σwy

(G ,N−{w , y})
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Application: the dP3 Quiver

Object of study. The dP3 quiver1and its associated
cluster algebra.

Goal. Understand combinatorial interpretations for
toric cluster variables obtained from sequences of mu-
tations.
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Figure 1. The dP3 toric diagram, its quiver Q, and its associated brane tiling T .

2.2. The Del Pezzo 3 Quiver and its Brane Tiling. With quiver and cluster
mutation in mind, we introduce our main character, the quiver Q associated to the
third del Pezzo surface (dP3), illustrated in Figure 1 with its associated brane tiling
[FHK+, FHKV08, FHSVW, HV]. We focus on one of the four possible toric phases of
this quiver. In particular, Q is typically referred to as Model 1, as it is in Figure 27 of
[EF]. (However, for completeness, we mention that these were first described earlier in
the physics literature in [BP, FHHU01]).) Its Toric Diagram is the the convex hull of
the vertices {(�1, 1), (0, 1), (1, 0), (1,�1), (0,�1), (�1, 0), (0, 0)}. See Figure 1 (Left).

In a toric supersymmetric gauge theory, a formal linear combination of closed cycles
of the quiver where each edge in the unit cell of the brane tiling appears exactly twice,
once for clockwise (positive) orientation and once for counter-clockwise (negative) ori-
entation, is known as a superpotential. Using a pair (Q, W ) where Q is a quiver that
can be drawn on a torus and W is a related superpotential, we can uniquely build a
2-dimensional cell complex using potential terms as 2-faces, quiver arrows as 1-faces,
and quiver vertices as 0-faces. We construct this cell complex on a torus (unfolded on
its universal cover the Euclidean plane), and then take its planar dual to get the brane
tiling associated to (Q, W ).

Proceeding in this way for the case of the dP3 quiver with the superpotential W
given in (1), the associated brane tiling is illustrated on the right-hand-side of Figure
1. We denote the dP3 brane tiling as T .

2.3. Toric Mutations. We say that a vertex of a quiver Q is toric if it has both
in-degree and out-degree 2. A toric mutation is a mutation at a toric vertex. Begin-
ning with the dP3 quiver introduced in Section 2.2, mutation at any vertex is a toric
mutation. We call this initial quiver Model 1. After any such mutation, up to graph
isomorphism, we have a quiver as illustrated in the top-right of Figure 2 (the graphics
are made with [Sage]).

In a Model 2 quiver, four out of the six vertices are toric at this point. Two of these
toric vertices come as an antipodal pair on the equator of the octahedron. Mutation
at one of them leads back to the original Model 1 quiver and mutation at the antipode
leads to a Model 1 quiver where some of the vertices have been permuted. The remain-
ing two toric vertices lie at the poles of the octahedron. Mutation at either of those
toric vertices leads to a Model 3 quiver or the reverse of a Model 3 quiver. See the

Main result. [LMNT, LM17, LM20]
In many cases, the Laurent expansion
of the toric cluster variables is equal to
the partition function for a certain sub-
graph of the dP3 lattice (with appropri-
ate edge-weights).

1 The quiver Q associated with the Calabi-Yau threefold complex cone over the
third del Pezzo surface of degree 6 (CP2 blown up at three points).
Images shown are Figures 1 and 2 from T. Lai and G. Musiker, Dungeons and Dragons:
Combinatorics for the dP3 Quiver
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Quiver, quiver mutations, and cluster variables

A quiver Q is a directed finite graph.

Definition (Mutation at a vertex i)

For every 2-path j → i → k, add
j → k

Reverse all arrows incident to i

Delete 2-cycles

Q

µ1(Q)

Define a cluster algebra from a quiver Q by associating a cluster
variable xi to every vertex labeled i .

When we mutate at vertex i we replace xi with x ′i , where

x ′i =

∏
i→j in Q

x
ai→j

j +
∏

j→i in Q

x
bj→i

j

xi

When we mutate at vertex 1 we replace x1 with x ′1 =
x4x6 + x3x5

x1
.

Now we have the cluster: { x4x6+x3x5
x1

, x2, x3, . . . , x6}
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Quiver, quiver mutations, and cluster variables

Q µ1(Q) µ1µ4(Q)

Mutate at 4: replace x4 with

x ′4 =
x3x6 + x2x

′
1

x4
=

x1x3x6 + x2x3x5 + x2x4x6

x1x4

Theorem (FZ02)

Every cluster variable is a Laurent polynomial in x1, . . . , xn.

A toric mutation is a mutation at a vertex with both in-degree and
out-degree 2.
Image shown is Figure 2 from T. Lai and G. Musiker, Dungeons and Dragons: Combinatorics for
the dP3 Quiver
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Combinatorial formula for some toric cluster variables

Example. (Z12) Toric cluster variables from the pe-
riodic mutation 1, 2, 3, 4, 5, 6, 1, 2, . . . agree with par-
tition functions for subgraphs of the dP3 lattice with
appropriate edge weights (the edge bordering faces i
and j has weight 1

xixj
).
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Figure 1. The dP3 toric diagram, its quiver Q, and its associated brane tiling T .

2.2. The Del Pezzo 3 Quiver and its Brane Tiling. With quiver and cluster
mutation in mind, we introduce our main character, the quiver Q associated to the
third del Pezzo surface (dP3), illustrated in Figure 1 with its associated brane tiling
[FHK+, FHKV08, FHSVW, HV]. We focus on one of the four possible toric phases of
this quiver. In particular, Q is typically referred to as Model 1, as it is in Figure 27 of
[EF]. (However, for completeness, we mention that these were first described earlier in
the physics literature in [BP, FHHU01]).) Its Toric Diagram is the the convex hull of
the vertices {(�1, 1), (0, 1), (1, 0), (1,�1), (0,�1), (�1, 0), (0, 0)}. See Figure 1 (Left).

In a toric supersymmetric gauge theory, a formal linear combination of closed cycles
of the quiver where each edge in the unit cell of the brane tiling appears exactly twice,
once for clockwise (positive) orientation and once for counter-clockwise (negative) ori-
entation, is known as a superpotential. Using a pair (Q, W ) where Q is a quiver that
can be drawn on a torus and W is a related superpotential, we can uniquely build a
2-dimensional cell complex using potential terms as 2-faces, quiver arrows as 1-faces,
and quiver vertices as 0-faces. We construct this cell complex on a torus (unfolded on
its universal cover the Euclidean plane), and then take its planar dual to get the brane
tiling associated to (Q, W ).

Proceeding in this way for the case of the dP3 quiver with the superpotential W
given in (1), the associated brane tiling is illustrated on the right-hand-side of Figure
1. We denote the dP3 brane tiling as T .

2.3. Toric Mutations. We say that a vertex of a quiver Q is toric if it has both
in-degree and out-degree 2. A toric mutation is a mutation at a toric vertex. Begin-
ning with the dP3 quiver introduced in Section 2.2, mutation at any vertex is a toric
mutation. We call this initial quiver Model 1. After any such mutation, up to graph
isomorphism, we have a quiver as illustrated in the top-right of Figure 2 (the graphics
are made with [Sage]).

In a Model 2 quiver, four out of the six vertices are toric at this point. Two of these
toric vertices come as an antipodal pair on the equator of the octahedron. Mutation
at one of them leads back to the original Model 1 quiver and mutation at the antipode
leads to a Model 1 quiver where some of the vertices have been permuted. The remain-
ing two toric vertices lie at the poles of the octahedron. Mutation at either of those
toric vertices leads to a Model 3 quiver or the reverse of a Model 3 quiver. See the

1
x4x6+x3x5

x1
=
(

1
x2

1 x3x5
+ 1

x2
1 x4x6

)
x1x3x4x5x6 = ZD(G )m(G )

x3 in µ3µ2µ1(Q): x2x3x2
5 +x1x3x5x6+x2x4x5x6+x1x4x2

6
x1x2x3 2

31

x5 in µ5µ4µ3µ2µ1(Q):
(x2x5+x1x6)(x1x3+x2x4)(x3x5+x4x6)2

x2
1 x

2
2 x3x4x5

2

3

4
2

5

1

1 1

These subgraphs are Aztec Dragons (see for example CY10).
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Z3 parameterization for toric cluster variables and an
algebraic formula

Lai and Musiker (LM17) showed that the set of toric cluster variables is
parameterized by Z3.

Let zi ,j ,k denote the toric cluster variable corresponding to (i , j , k) ∈ Z3.

Theorem (LM17)

Let A = x3x5+x4x6
x1x2

, B = x1x6+x2x5
x3x4

, C = x1x3+x2x4
x5x6

, D = x1x3x6+x2x3x5+x2x4x6
x1x4x5

,

E = x2x4x5+x1x3x5+x1x4x6
x2x3x6

. Then

zi ,j ,k = xrA
b (i2+ij+j2+1)+i+2j

3
cBb

(i2+ij+j2+1)+2i+j
3

cC b
i2+ij+j2+1

3
cDb

(k−1)2

4
cE b

k2

4
c

xr is an initial cluster variable with r depending on (i − j) mod 3 and k
mod 2.
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Combinatorial interpretation of zi ,j ,k
Map from Z3 to Z6:

(i , j , k)→ (a, b, c, d , e, f ) = (j + k,−i − j − k, i + k, j − k + 1,−i − j + k − 1, i − k + 1)

Given a six-tuple (a, b, c , d , e, f ) ∈ Z6, superimpose the con-
tour C (a, b, c, d , e, f ) on the dP3 lattice.
Magnitude determines length and sign determines direction.

Examples:
(1, 2, 1)→ (3,−4, 2, 2,−3, 1) (−2,−2, 3)→ (1, 1, 1,−4, 6,−4) (1, 2, 3)→ (5,−6, 4, 0,−1,−1)
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Image credit: T. Lai and G. Musiker. Beyond Aztec Castles: Toric cascades in the dP3 Quiver
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Combinatorial interpretation of zi ,j ,k
Some possible shapes of the contours:

(+,−,+,+,−,+), (+,−,+, 0,−,+), (+,−,+, 0,−,−), (+,−,+,+,−,−),(+,+,+,−,+,−), (+,−,+,−,+,−)

Theorem (LM17)

Let G be the subgraph cut out by the contour
(a, b, c , d , e, f ) = (j + k ,−i − j − k , i + k , j − k + 1,−i − j + k − 1, i − k + 1).
As long as C (a, b, c , d , e, f ) has no self-intersections,

zi ,j ,k = ZD(G )m(G )

What about when C (a, b, c , d , e, f ) is self-intersecting?
Image shown is Figure 12 from T. Lai and G. Musiker, Beyond Aztec Castles: Toric cascades in
the dP3 Quiver
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Cross-section when k is positive
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Figure 20 from T. Lai and G. Musiker, Beyond Aztec Castles: Toric cascades in the dP3 Quiver
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Combinatorial interpretation for self-intersecting contours

Theorem (J.-Lai-Musiker 2020+)

For the dP3 quiver, we complete the assignment of combinatorial
interpretations to toric cluster variables. In particular, for (i , j , k)
corresponding to a self-intersecting contour we express zi ,j ,k as a partition
function for a tripartite double-dimer configuration.

(−1,−2, 4)→ (2,−1, 3,−5, 6,−4) (1,−2, 4)→ (2,−3, 5,−5, 4,−2)
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Sketch of proof for self-intersecting contours

Our proof uses a bijection between dimers and double dimers, the dimer
interpretations of LM17 as a base case, and then proceeds by induction via
double-dimer condensation.

z−1,−2,4 · z0,−2,2 = z−1,2,3 · z0,−2,3 + z−1,−1,3 · z0,−3,3

ZDD
σ (G ,N)ZDD

σ5
(G−ACEF ,N−ACEF ) = ZDD

σ1
(G − AC ,N− AC)ZDD

σ2
(G − EF ,N− EF )

+ ZDD
σ3

(G − CE ,N− CE)ZDD
σ4

(G − AF ,N− AF )

C

E

F

A
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Thank you for listening!
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