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Setup and question
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Vector bundles

Discrete vector bundle: a graph with isomorphic vector spaces of same
dimension (called the rank) over its vertices (and edges)

Connection: isomorphisms between these fibers (we will consider
inner-product spaces and isometries)

From discretization of continuous vector bundles: graph embedded on the
base space of a bundle.

tangent bundle of round sphere S2 ⊂ R3: transport reflects curvature;
example of a geodesic triangle with 3 right-angles, and holonomy π/2.

flat case: representation of fundamental group of a manifold

Moebius strip: cycle-graph with holonomy −1

Discrete setup: confusion between topology and geometry, both encoded
in the connection h. Non triviality comes from the cycles in the graph.
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Discrete vector bundles as networks with holonomy

Graph with connection:

x ye

Fx ' Rr Fy ' Rr

he

h−1
e

Holonomy: composition of isomorphisms along paths

In fact, we will need a refined bundle: adding a fiber over each edge (on a
metric graph, we would have a bundle over the segment of that edge)

Fx

Fe Fy

x
y

e

he,x hy,e

he−1,yhx,e−1
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Notion of gauge: choice, transformation, covariance,
invariance

Think of example of sphere: choice of basis of each fiber affects the
matrices on edges, but not the holonomies of closed path up to
conjugation.

In general, there is an internal degree of freedom which consists in
automorphisms of the fibers of the bundle. Conjugating the h by these is
called a gauge transformation. Holonomies are conjugated too, so their
traces are invariant.

Some quantities are gauge invariant, some covariant.
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Covariant derivative

In the talk, we assume the graph to be finite and connected.

ex y

f(x) f(y)

he,x

he−1,y

df(e)

Fx Fe Fy

covariant derivative d : for this to be thought of as a derivative, we imagine
the edge to be infinitesimally small (see later, although on a finite graph).

Laplacian: ∆ = d∗d . Dirichlet energy:

E(f ) =
1

2

∑
e=xy

‖fx − h−1
e fy‖2 = 〈f ,∆f 〉

In general, for f of fixed norm, minimum is not zero, unlike when h = 1.
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Probability on these networks with holonomy?

In the case where h = 1, we have the plain geometry of a graph, and we
know of interesting probabilistic objects: random walk, Gaussian free field
(GFF), loop soups, uniform spanning tree.

When h 6= 1 or the rank N ≥ 2, we still have these objects, but we would
like to see more.

Question

Which objects can we define which would take into account the presence
of h and what are the relations between them?

Related but different question: study field of random h (lattice gauge
theory). Instead, we fix h (random or not), and study processes in the
environment determined by h.

The environment h can be interpreted as ‘disorder’ variables in a spin
system (notion of frustration).
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Gaussian free vector field

The Dirichlet action defines a Gaussian measure: a Gaussian free vector
field Φ.

Unless h is trivial, it is not determined by N iid scalar GFFs (see sample).
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Isomorphism theorems

Link to random walk holonomies [K.–Lévy, 2016]:

If x and y are vertices, and if ξ and η are respectively vectors of the fibers
over x and y , then

E[〈ξ,Φx〉〈Φy , η〉] =

∫
〈ξ,hol(γ)−1(η)〉 dνx ,y (γ),

where νx ,y is a finite measure on the set of paths from x to y .
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Isomorphism theorems

Link to loop soups weighted by matrix-coefficients of holonomies of paths.

Let us illustrate on a particular example inspired by Titus Lupu
[Lupu, 2019]. Consider the real vector bundle of Hermitian matrices, and
connection acts by conjugation: Mx 7→ hxyMxh

−1
xy .

Let Ψ be the Gaussian random matrix field (Gaussian Unitary Ensemble,
GUE over each vertex, but all correlated).

Theorem ([K.–Lévy, 2016])

The field x 7→ 1
2Tr(Ψ∗xΨx) = 1

2

∑
i λ

2
x ,i has the same distribution as the

occupation field of a Poisson point process of loops with intensity
1
2Tr(holh(·))2µ, where µ is the ‘usual’ loop measure.
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Partition function

These identities are proved by computing Laplace transforms of the
distributions which involve det ∆ (depending on some parameters which
deform ∆). For instance, the partition function of the Gaussian field is
(det ∆)−1/2.

This is the ‘bosonic’ story.

How do we find other ‘fermionic’ processes in there? Is det ∆ the partition
function of some probabilistic model?
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Determinantal point processes
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Spanning trees and cycle-rooted spanning forests

Matrix-tree theorem says that a volume (a determinant) is equal to a
partition function (a polynomial counting something).

Rank N = 1, h = 1, Kirchhoff:

det
′
∆ =

∑
spanning trees

∏
e

ce

Rank N = 1, h 6= 1, Forman–Kenyon:

det ∆h =
∑

CRSF

∏
e

ce
∏

cycles c

(2− 2<hol(c))
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Trees and forests as determinantal point processes

Burton–Pemantle, and then Kenyon showed that if we pick the above
subgraphs with probability proportional to the weight in the partition
function, then these are determinantal point processes (DPP).

The local correlations are given by

P(edges e1, . . . , ek are occupied) = det[(Kei ,ej )1≤i ,j≤k ]

where K is the matrix in an orthonormal basis indexed by edges, of the
orthogonal projection on im(d), the range of the (covariant) derivative in
the space Ω1 of 1-forms.
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General rank N

Start with case of diagonal connection: independence, partition function is
product, etc. but we can look for something more general.

We have formulas for partition function but not clear how to interpret (see
below however).

So we will generalize the DPP point of view.
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Random vector subspaces

DPP on a finite set is a probability measure on subsets X such that there
is a matrix K , such that for any subset S , P(S ⊂ X ) = detKS

S .

Geometric point of view on DPP: determinantal linear processes (DLP).
A kernel is the matrix of an operator k in a basis. This choice of basis is
important: think of taking a basis which diagonalizes k (DPP becomes
Poisson).

In our case, we have a vector space Ω1 given by a splitting rather than
coming with a particular basis.

Ω1 = ⊕eFe

with Fe ' RN .
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Random vector subspaces

Setup: inner product vector space E of dimension d split as the orthogonal
direct sum E = E1 ⊕ . . .⊕ Es . We denote by σ this splitting.

Given a kernel k we define a way to pick a random subspace Q built from
the building blocks Ei .

For that matter, let us introduce the notation Gr(E ) for the
Grassmannian, i.e. the set of all subspaces. We endow it with the unique
invariant finite positive measure ν with total mass 2d and assigning mass(d
n

)
to each Grn(E ). It is a ‘continuous counting’ measure.

Let Gr(E , σ) ' Gr(E1)× · · · × Gr(Es) be the subset of the Grassmannian
determined by the splitting σ. There is a unique invariant positive measure
νσ on this set assigning total mass 2d .
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Density of determinantal measures

Let 0 ≤ k = k∗ ≤ 1 be a self-dual positive contraction; we will call it a
kernel.

If Q is a subspace, let ΠQ denote the orthogonal projection on Q.

Then
Q 7→ fk(Q) = det(kΠQ + (1− k)ΠQ⊥

)

is a positive function on Gr(E ) and∫
fk(Q)dν(Q) = 1.
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Density of determinantal measure

Plücker embedding: ι : Gr(E )→ Gr1(
∧
E ),

H = Vect(u1, . . . , uk) 7→ R(u1 ∧ . . . ∧ uk).

In case k is the orthogonal projection on a subspace H of dimension n,
then Q is a.s. of dimension n and the density is cosine squared of angle
between lines in Plücker embedding of H and Q:

α

F

G

1GF

1FG

(it is the determinant of the map obtained by composing two projections
on figure)
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A unique density, different determinantal measures.

Let Gr(E , σ) ' Gr(E1)× · · · × Gr(Es) be the subset of the Grassmannian
determined by the splitting σ. There is a unique invariant positive measure
νσ on this set assigning total mass 2d .

For any splitting σ, ∫
Gr(E ,σ)

fk(Q)dνσ(Q) = 1

Interpretation: these measures come from different observables of the
same state (see later).

Way to sample: pick a uniform random basis in each Ei , then sample a
DPP with kernel matrix in that basis, and look at the associated random
subspace.
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Example: Grassmannian-valued field

DLP with kernel given by orthogonal projection on im(dh).

Here, connection is chosen according to SO(3) Yang–Mills measure on the
plane.
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Example: dependent percolation field

With a choice of basis (uie)e,i . If we look at the DPP induced on (u1
e )e .

Example: in the trivial case of RN , get a kernel Ku
e,e′ = Ke,e′〈ue , ue′〉

where K is the UST kernel.
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Projection formula

When k = ΠH , the random subspace Q is an ‘approximation’ to H given
by the splitting σ:

E = Q⊕ H⊥.

Moreover

E[PQ
‖H⊥ ] = ΠH

In fact more:

Theorem ([K.–Lévy, 2016])

E[
∧
PQ
‖H⊥ ] =

∧
ΠH

(Part of this theorem or special cases were known to various authors.)

Recall:
∧
a(e1 ∧ . . . ∧ ek) = ae1 ∧ . . . ∧ aek .
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Kirchhoff’s electrical formula

Now let us turn back to our model. We can rewrite the projection formula
as

E[P♦‖Q] = Π♦

In the case of rank 1 and h = 1, Q is a uniform spanning tree. This
formula allows to write a current as an average current flowing along
branches of UST (Kirchhoff’s formula).
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Interpretation

The point of view of ‘several observables for one common state’ can be
stated using the language of positive operator-valued measures.
Define an observable: the map which to a Borel set B associates the
operator

Oσ(B) =

∫
B

Πι(Q) dνσ(Q).

To every kernel k on E corresponds a density of states ρk ∈ End(
∧
E ).

When k is orthogonal projection onto H, ρk is orthogonal projection onto
ι(H). When k < 1,

ρk = det(1− k)
∧

(k(1− k)−1).

Theorem ([K.–Lévy, 2016])

Let Q be a determinantal linear process of (E , σ) with kernel k. Then for
every Borel subset B of Gr(E , σ), one has the equality

P(Q ∈ B) = Tr∧E (Oσ(B)ρk) .
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Partition function

Let us come back to the partition function det ∆. We have obtained
several matrix-tree type formulas but not easy to interpret.

Most gauge invariant one:

Theorem (K.–Lévy, 2018, unpublished yet)

det ∆ =
∑

N−CRSF

∏
e

ce
∑

multiset S
of cycles

∏
c∈S −Tr(hol(c))

S!
∏

c∈S val(c)

Allows to recover the formula of Forman in rank N = 1.

Another way to obtain formulas is to use the DPP framework: in general,
we find an integral of an explicit matrix, but which is not very
combinatorially-explicit.
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Partition function

Let us give a somewhat ‘nicer’ expression for h = etA close to the identity
(t → 0), which has a geometric meaning too (scaling limit, although here
graph is finite):

Theorem ([K.–Lévy, 2021])

lim
t→0

t−2N det ∆t =
∑

T=(T1,...,TN)

〈
xA,
(∧

NP♦‖QT

)
xA

〉∧
NΩ1

.

where QT is the space spanned by the N spanning trees Ti seen as
subspaces and xA = A1 ∧ A2 ∧ . . . ∧ AN .

The way we prove it is using the projection theorem stated before.
The underlying probability measure is a DPP with projection kernel on the
space FA = im(d)⊕Vect(A1, . . . ,AN).
In rank 1, the right-hand side becomes∑

unicycles with cycle c A
2
c , where Ac is the holonomy angle of the unique

cycle (a formula easily obtained from the Forman–Kenyon theorem, and
considered by Kenyon). 28 / 32



Perspectives
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Perspectives

Infinite graphs: well-defined objects, analogs of wired and free uniform
spanning forests. In the case of periodic connections: generically,
exponential decay of correlations. However, other cases to study. PhD
project of Hélöıse Constantin is to try to exhibit critical measures for these
spanning forests and describe the phase diagram.

Large N limit (easy remark about independence of percolation model
defined above)

Metric graphs; Continuous analogs

The results seem to extend to DPP with non-symmetric kernels: does the
projection formula say something interesting for dimers (e.g. analog of
Kirchhoff’s electrical result, maybe well-known)?

Random connection: weighted by partition function (analogous to random
map geometry deformations)
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Thank you for your attention
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