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The totally nonnegative (TNN) Grassmannian

Gr(k,n) :={W CR" | dim(W) = k}.
Gr(k, n) := {k x n matrices of rank k}/(row operations).
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e Both spaces are homeomorphic to closed (3)-dimensional balls.
o Kramers—Wannier's duality (1941) — cyclic shift.
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Gr>o(k, n) is homeomorphic to a k(n — k)-dimensional closed ball.

Our proof involves a flow that contracts the whole Gr>¢(k, n) to the unique cyclically
symmetric point Xy € Gr>o(k, n).
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Theorem (G.—Karp—Lam (2017))

Gr>o(k, n) is homeomorphic to a k(n — k)-dimensional closed ball.

Our proof involves a flow that contracts the whole Gr>¢(k, n) to the unique cyclically
symmetric point Xy € Gr>o(k, n).

Cyclic shift S : Gr(k,n) — Gr(k,n), [wi|wa|...|wa] = [(—=1)* 2wy w|...|wy_1].

This map preserves Gr>q(k, n).

Example: For Gr>o(2,4), we have

(1 0 -1 —V2\ s (V21 0 -1\ _
XO_(]_ \/§ 1 0 )'—>(0 1 \/§ 1>—X0€OG>0(2./4)

Aiz=2 Ap=+v2 Ap=+2
Dog =2 Nzg=+2 DNyz=+2
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Kramers—Wannier's duality

b3 by by by
€ € & €
e €1
by by KWD KWD bs bg
“ €4 “ €4
€6 €6
bs be by bs

Q: what happens if we apply the duality twice?
(KWD)?" = id.
Doubling map takes KWD to the cyclic shift on OGx>¢(n, 2n).

Critical Ising model 7 fixed point of KWD < fixed point of cyclic shift.
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Usually:
@ G = large piece of a (e.g.
square) lattice;

@ x. = x for all e € E(G).
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Usually:
@ G = large piece of a (e.g.
square) lattice;
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@ Get a phase transition at
critical temperature xgit.

X < Xerit X = Xerit X > Xerit

Picture credit: Dmitry Chelkak




Phase transition

1
Prob(o) = ? H X{u,v}-

{u,v}€E(G):
ouFoy
Usually:
@ G = large piece of a (e.g.
square) lattice;
@ x. = x for all e € E(G).
@ Get a phase transition at
critical temperature xit.

@ Square lattice: xeie = /2 — 1. X < Xerit X = Xcrit X > Xcrit

Picture credit: Dmitry Chelkak
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Square lattice
Xerit = \/5 -1

Xerit = tan(7/8)

Hexagonal lattice
Xerit = 2 — \/§
Xerit = tan(7/12)

Triangular lattice

_ 1
Xerit = %
Xerit = tan(7/6)



Square lattice
Xerit = \/5 -1

Xerit = tan(m/8)

Hexagonal lattice Triangular lattice
Xerit = 2 — \/§ Xerit = %

Xerit = tan(7/12) Xerit = tan(7/6)

o Xe = tan(0./2)
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[Bax86] R. J. Baxter. Free-fermion, checkerboard and
Z-invariant lattice models in statistical mechanics. Proc.
Roy. Soc. London Ser. A, 404(1826):1-33, 1986.
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@ Z-invariance: the boundary correlations (o;0;) 5
are invariant under flips (star-triangle moves).
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polygonal region R.




Critical Z-invariant Ising model

[Bax86] R. J. Baxter. Free-fermion, checkerboard and
Z-invariant lattice models in statistical mechanics. Proc.
Roy. Soc. London Ser. A, 404(1826):1-33, 1986

@ Choose a rhombus tiling of a polygonal region R.
@ G consists of diagonals connecting black vertices.

@ Edge weights:

e . — x.=tan(0./2)

09,
N

o

@ Z-invariance: the boundary correlations (o;0;) 5
are invariant under flips (star-triangle moves).

@ Conclusion: (0ioj)g depends only on the
polygonal region R.

@ Formula for (oj0;j) g in terms of R?




A formula for regular polygons

Let Ry be a regular 2N-gon
and (0;0}) . be the corresponding
boundary correlations.



https://arxiv.org/abs/2010.13345

A formula for regular polygons

Let Ry be a regular 2N-gon
and (0;0}) . be the corresponding
boundary correlations.

Theorem (G. (2020))

Forl1<i,j<Nandd:=|i—j

. we have

2 1 1 1
(0i0)) Ry = N (sin ((2d —1)7/2N)  sin((2d — 3)x/2N) +--- £ p (7r/2N)> +1.

[Gal20] Pavel Galashin. A formula for boundary correlations of the critical Ising model. arXiv:2010.13345, 2020.


https://arxiv.org/abs/2010.13345
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Theorem (G. (2020))

If Ry is a regular 2N-gon then for 1 < i,j < N and d := |i — j|, we have

2 1 1 5
oioilry =y (sin (@d— 1)r/2N)  sn((2d —3)x/2N) " sin (w/2N>> i

2 1
sin(w/2N)

N
2 1 L
(0103)g, = N (sin(37r/2/V) - Si"(W/2N)> o

<0102>RN

1,




Theorem (G. (2020))

If Ry is a regular 2N-gon then for 1 < i,j < N and d := |i — j|, we have

N ] 1 P SN e
i%70ry = (sin ((2d — D)r/2N) ~ sin((2d —3)w/2N) ~ sin(x/2N)) T
2 1
(0102)g, = N sin(m/2N) L
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Theorem (G. (2020))
If Ry is a regular 2N-gon then for 1 < i,j < N and d := |i — j|, we have

2 1 1 5
oioilry =y (sin (@d— 1)r/2N)  sn((2d —3)x/2N) " sin (w/2N>> i

1

2
(0102)g, = N sin(m/2N) L
2 1 1
<‘7103>RN = N (sin(37r/2N) N 5in(7T/2N)> +1,
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Theorem (G. (2020))

If Ry is a regular 2N-gon then for 1 < i,j < N and d :=|i —j

, we have

2 1 1 5
oioilry =y (sin (@d— 1)r/2N)  sn((2d —3)x/2N) " sin (w/2N>> i

2 1

(0100)8, = " Gnerany ~ b

2 1 1
(0103)g, = N (sin(37r/2/V) - Sin(ﬁ/ﬂv)) o

2 1 1 L
<(7104>RN =N <sin(57T/2N) B sin(37/2N) + sin(7r/2N)> -1

@ Q: Does <010d+1>RN —0forl < d< N?
@ A: Yes, by the Leibniz formula for 7:
T, 1,11
4 3 5 7 9 '
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If Ry is a regular 2N-gon then for 1 < i,j < N and d := |i — j|, we have
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When regular polygons approach the circle, the boundary correlations tend to the
limit predicted by conformal field theory.
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Theorem (G. (2020))

If Ry is a regular 2N-gon then for 1 < i,j < N and d := |i — j|, we have

2 1 1 5
oioilry =y (sin (@d— 1)r/2N)  sn((2d —3)x/2N) " sin (w/2N>> i

Corollary (G. (2020))

When regular polygons approach the circle, the boundary correlations tend to the
limit predicted by conformal field theory.

[CS12] Dmitry Chelkak and Stanislav Smirnov. Universality in the 2D Ising model and conformal invariance of
fermionic observables. Invent. Math., 189(3):515-580, 2012.
[Hon10] Clement Hongler. Conformal invariance of Ising model correlations. PhD thesis, 06/28 2010.
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@ Treat each edge of G as a resistor.

@ Resistance R. = ratio of diagonals: «——¢ -, Re=tan(fe)
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@ Electrical response matrix A : RN — RV, voltages — currents.

ho L
3
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N=— 1 -2 1
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Electrical networks

@ Treat each edge of G as a resistor.

@ Resistance R. = ratio of diagonals: «——¢ -, Re=tan(fe)
ST
20
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@ Electrical response matrix A : RN — RV, voltages — currents.

@ Alis invariant under star-triangle moves = depends only on the region.




Electrical networks

@ Treat each edge of G as a resistor.

@ Resistance R, = ratio of diagonals: ~~—t——=. Re=tan(0c)

@ Electrical response matrix A : RN — RV, voltages — currents.

@ Alis invariant under star-triangle moves = depends only on the region.

1
Theorem (G. (2021)) Re =

If R is a regular 2N-gon then for 1 < i,j < N and d := |i — j|, we have

sin(7/N)

N = N sin((2d = D)7 /2N) - sin((2d + 1)7/2N)"




Electrical networks

@ Treat each edge of G as a resistor.

@ Resistance R, = ratio of diagonals: ~~—t——=. Re=tan(0c)

@ Electrical response matrix A : RN — RV, voltages — currents.

@ Alis invariant under star-triangle moves = depends only on the region.

1
Theorem (G. (2021)) Re =

V3
If R is a regular 2N-gon then for 1 < i,j < N and d := |i — j|, we have
A sin(7/N) 5 1 1
"N -sin((2d — 1)7/2N) - sin((2d + 1) /2N) A 1 1 5 1
@ Ising model case: x. = tan(6./2) and V3l 1 2

2 1 1 1
0ioiry = N <sin (2d = D)r/2N) ~ sin((2d = 3)r/2N) T sin (7r/2N)) Tl




Critical dimer model



@ (G,wt) — a weighted planar bipartite graph, with n black boundary
vertices by, by, ..., b, of degree 1.

[Pos06] Alexander Postnikov. Total positivity, Grassmannians, and networks.
Preprint, arXiv:math/0609764, 2006.

by

b3


https://arxiv.org/abs/math/0609764

@ (G,wt) — a weighted planar bipartite graph, with n black boundary
vertices by, by, ..., b, of degree 1.

@ An almost perfect matching A uses all interior vertices and some

subset J(.A) of the boundary vertices (0(A) C [n] :={1,2,...,n}).

[Pos06] Alexander Postnikov. Total positivity, Grassmannians, and networks.
Preprint, arXiv:math/0609764, 2006.
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@ (G,wt) — a weighted planar bipartite graph, with n black boundary
vertices by, by, ..., b, of degree 1.

@ An almost perfect matching A uses all interior vertices and some

subset J(.A) of the boundary vertices (0(A) C [n] :={1,2,...,n}).

@ Boundary measurement map Measg(wt) = (AJ(G,Wt))Je([n]):
k

A (G,wt) = Z wt(A), where wt(A) ::HWt(e).

A:(A)=J ec A

[Pos06] Alexander Postnikov. Total positivity, Grassmannians, and networks.
Preprint, arXiv:math/0609764, 2006.
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https://arxiv.org/abs/math/0609764

(G, wt) — a weighted planar bipartite graph, with n black boundary
vertices by, by, ..., b, of degree 1.

An almost perfect matching A uses all interior vertices and some
subset J(.A) of the boundary vertices (0(A) C [n] :={1,2,...,n}).

Boundary measurement map Measg(wt) = (AJ(G,Wt))Je([n]):
k

A (G,wt) = Z wt(A), where wt(A) ::HWt(e).

A:(A)=J ec A

A strand is a path in G that makes a sharp right turn at each black
vertex and a sharp left turn at each white vertex.

Strand permutation: f¢ : [n] — [n].

[Pos06] Alexander Postnikov. Total positivity, Grassmannians, and networks.
Preprint, arXiv:math/0609764, 2006.

by

b3


https://arxiv.org/abs/math/0609764
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[Ken02] R. Kenyon. The Laplacian and Dirac operators on critical planar graphs.

Invent. Math., 150(2):409-439, 2002.

[OPS15] Suho Oh, Alexander Postnikov, and David E. Speyer. Weak separation
and plabic graphs. Proc. Lond. Math. Soc. (3), 110(3):721-754, 2015.
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[Ken02] R. Kenyon. The Laplacian and Dirac operators on critical planar graphs.

Invent. Math., 150(2):409-439, 2002.
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@ Fix 0 =(01,605,...,0,) suchthat 6, < 0, <--- <6, <6y +.

@ Each edge e belongs to exactly two strands terminating at b,
and bg for 1 < p < g < n. Set

to(e) sin(fq — 6,), if e is not a boundary edge,
wW =
0 1, otherwise.

by by




Critical dimer model

[Ken02] R. Kenyon. The Laplacian and Dirac operators on critical planar graphs.

Invent. Math., 150(2):409-439, 2002.

[OPS15] Suho Oh, Alexander Postnikov, and David E. Speyer. Weak separation
and plabic graphs. Proc. Lond. Math. Soc. (3), 110(3):721-754, 2015.

@ Fix 8 = (01,0, ..

@ Each edge e belongs to exactly two strands terminating at b,
and bg for 1 < p < g < n. Set

sin(0 — 0,).
1, otherwise.

wio(e) = if e is not a boundary edge,

., 0p) such that 0y < b < --- <0, <6+

by by

by b3
(pq) :=sin(fq — 6,)
(23) - (24)
34)- (24 ,
214; ) E24§ by Ptolemy’s
(12) - (24) theorem
(24) - (24) |
(14) - (23) + (12) - (34)=(13) - (24)



® Fix 6 = (61,05, ..

@ Each edge e belongs to exactly two strands terminating at b,

Critical dimer model

by by

and bg for 1 < p < g < n. Set

th(e) — {im(eq - ep)a

by by

by bs

., 0p) such that 0; <6 < --- <0, <0+

if e is not a boundary edge,

otherwise.

@ This model is invariant under square moves:

by by

by b3

App = (23) - (24)
D3 = (34) - (24) ,

A; =(14)-(24) by Ptolemy’s

Agq = (12) - (24) theorem

Az = (24) - (24) l

Bor = (14) - (23) +(12) - (34)2(13) - (24)
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by by

@ This model is invariant under square moves:

by by by by

by b3 by b3

@ A graph G is reduced if it has the minimal number of faces
among all graphs with the same strand permutation.

= (23) - (24)

=(34) - (24) :

_ 214; ) E24) by Ptolemy’s

= (12)- (24) theorem

= (24) - (24) 1

= (14) - (23) + (12) - (34)=(13) - (24)



Critical dimer model

by by

@ This model is invariant under square moves:

@ A graph G is reduced if it has the minimal number of faces
among all graphs with the same strand permutation.

@ Any two reduced G, G’ with fg = f¢: are related by square

moves.

by

by

b3

by

by

= (23) - (24)

= (34)-(24) ,

— (14) - (24) by Ptolemy’s

= (12)- (24) theorem

= (24) - (24) 1

= (14) - (23) + (12) - (34)=(13) - (24)



Critical dimer model

by by

@ This model is invariant under square moves:

by by by by

e
ba by by bs
@ A graph G is reduced if it has the minimal number of faces Ay =(23) - (24)
i . Doy = (34) - (24) :

among all graphs with the same strand permutation. Doy — (14) - (24) by Ptolemy’s

@ Any two reduced G, G’ with fg = fg' are related by square 214:83.88 theolrem
13 = :
moves. Dog = (14) - (23) + (12) - (34)Z(13) - (24)

@ Conclusion: for each reduced G with fg = f,
Measg(wtg) = Meass(0) depends only on f and 6.




Critical dimer model

by by

@ This model is invariant under square moves:

by by by by

e
ba by by bs
@ A graph G is reduced if it has the minimal number of faces Ay =(23) - (24)
i . Doy = (34) - (24) :

among all graphs with the same strand permutation. Doy — (14) - (24) by Ptolemy’s

@ Any two reduced G, G’ with fg = fg' are related by square 214:83.88 theolrem
13 = :
moves. Dog = (14) - (23) + (12) - (34)Z(13) - (24)

@ Conclusion: for each reduced G with fg = f,
Measg(wtg) = Meas¢(0) depends only on f and 6.

@ Formula for Meas¢(8) in terms of f and 67




@ Strand: turn right/left at each black/white vertex.
@ Strand permutation: f € S,.

by

by

by

by

by



@ Strand: turn right/left at each black/white vertex.
@ Strand permutation: f € S,. —
Jr:={j €[n] | b is to the left of strand b; — b;}.

by by

h={2} L={3} L={4 L={1}




@ Strand: turn right/left at each black/white vertex.
@ Strand permutation: f € S,. —
Jr:={j €[n] | b is to the left of strand b; — b;}.

by bs

@ Consider a curve v¢ o(t) = (71(t), v2(t), - - ., va(t)):

7 (t) =€ H sin(t — 6,) for r € [n],

PEJ;

h={2} L={3} hs={4 L={1}

< ~r.0(t) = (sin(t — 62),sin(t — 63),
where ¢, = (—1)#{PelrllfPIsp<r}, sin(t — ), —sin(t — 1))




@ Strand: turn right/left at each black/white vertex.
@ Strand permutation: f € S,.
Jr:={j €[n] | b is to the left of strand b; — b;}.

@ Consider a curve yrg(t) = (71(t),72(t), ..., 7a(t)):

7 (t) =€ H sin(t — 6,) for r € [n],

PEJ;

where ¢, := (_1)#{P€[n]|f(p)<p<r}.

Theorem (G. (2021))

Meass(0) = Span(vr,e) inside Gr(k, n).

h={2} L={3} hs={4 L={1}

~r.0(t) = (sin(t — 62),sin(t — 63),
sin(t — 64), —sin(t — 61))



@ Strand: turn right/left at each black/white vertex.
@ Strand permutation: f € S,.
Jr:={j €[n] | b is to the left of strand b; — b;}.

@ Consider a curve yrg(t) = (71(t),72(t), ..., 7a(t)):

v (t) =€, H sin(t — 6p)

ped;

for r € [n],

where ¢, := (_1)#{P€[n]|f(p)<p<r}.

Theorem (G. (2021))

Meass(0) = Span(vr,e) inside Gr(k, n).

h={2} L={3} hs={4 L={1}

~r.0(t) = (sin(t — 62),sin(t — 63),
sin(t — 64), —sin(t — 61))

Span(~yr,g) is the row span of
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@ Strand: turn right/left at each black/white vertex.
@ Strand permutation: f € S,.
Jr:={j €[n] | b is to the left of strand b; — b;}.

@ Consider a curve yrg(t) = (71(t),72(t), ..., 7a(t)):
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where ¢, := (_1)#{P€[n]|f(p)<p<r}.

Theorem (G. (2021))

Meass(0) = Span(vr,e) inside Gr(k, n).

h={2} L={3} hs={4 L={1}

~r.0(t) = (sin(t — 62),sin(t — 63),
sin(t — 64), —sin(t — 61))

Span(~yr,g) is the row span of

(f sin(62) —sin(f3) —sin(6s)  sin(6y) )
cos(f2)  cos(f3)  cos(By) —cos(6y)

Alg = sin(6‘3 — 92) A23 = sin(6‘4 — 93)
A34 = sin(04 — 91) A14 = sin(6’2 — 91)
A13 = sin(04 — 92) A24 = sin(93 — 91)



@ Strand: turn right/left at each black/white vertex.
@ Strand permutation: f € S,.
Jr:={j €[n] | b is to the left of strand b; — b;}.

@ Consider a curve yrg(t) = (71(t),72(t), ..., 7a(t)):

v (t) =€, H sin(t — 6p)

ped;

for r € [n],

where ¢, := (_1)#{P€[n]|f(p)<p<r}.

Theorem (G. (2021))

Meass(0) = Span(vr,e) inside Gr(k, n).
A =(23)-(24) (pq) = sin(0g — 0,)
ﬁi z g’ig 5243 by Ptolemy's
Ary = (12) - (24) theorem
Az = (24) - (24) 1
Doy = (14) - (23) + (12) - (34)=(13) - (24)

h={2} L={3} hs={4 L={1}

(sin(t — 6), sin(t — 63),
sin(t — 04), —sin(t — 61))

Yr.0(t) =

Span(~yr,g) is the row span of

(f sin(62) —sin(f3) —sin(6s)  sin(6y) )
cos(f2)  cos(f3)  cos(By) —cos(6y)

Alg = sin(6‘3 — 92) A23 = sin(6‘4 — 93)
A34 = sin(04 — 91) A14 = sin(6’2 — 91)
A13 = sin(04 — 92) A24 = sin(93 — 91)



Applications: Ising model and electrical networks

@ Given an n = 2N-gon R, denote its sides by vq, vo, ..., vy € C. This yields:
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IZT) 17 V18
Vi1 Vie

Vis
Vi2
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Vi3



Applications: Ising model and electrical networks

@ Given an n = 2N-gon R, denote its sides by vq, vo, ..., vy € C. This yields:
o A fixed-point-free involution 7 : [2N] — [2N];
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Applications: Ising model and electrical networks

@ Given an n = 2N-gon R, denote its sides by vq, vo, ..., vy € C. This yields:
o A fixed-point-free involution 7 : [2N] — [2N];
o A tuple 8 = (61,02,...,02n) satisfying v, = exp(2i6,).
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Vi1 Vie Vi1
—
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<
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v, = exp(2i6,) 7(1) =7, etc.



Applications: Ising model and electrical networks

@ Given an n = 2N-gon R, denote its sides by vq, vo, ..., vy € C. This yields:
o A fixed-point-free involution 7 : [2N] — [2N];
o A tuple 8 = (61,02,...,02n) satisfying v, = exp(2i6,).

@ For k = N, f = 7, this recovers the critical Ising model.
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@ Given an n = 2N-gon R, denote its sides by vq, vo, ..., vy € C. This yields:
o A fixed-point-free involution 7 : [2N] — [2N];
o A tuple 8 = (61,02,...,02n) satisfying v, = exp(2i6,).
@ For k = N, f = 7, this recovers the critical Ising model.
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Applications: Ising model and electrical networks

@ Given an n = 2N-gon R, denote its sides by vq, vo, ..., vy € C. This yields:
o A fixed-point-free involution 7 : [2N] — [2N];
o A tuple 8 = (61,02,...,02n) satisfying v, = exp(2i6,).
@ For k = N, f = 7, this recovers the critical Ising model.
[GP20] Pavel Galashin and Pavlo Pylyavskyy. Ising model and the positive orthogonal Grassmannian. Duke Math. J.,
169(10):1877-1942, 2020.
@ For k = N+ 1 and f(p) = 7(p + 1), this recovers critical electrical networks.
[Lam18] Thomas Lam. Electroid varieties and a compactification of the space of electrical networks. Adv. Math.,
338:549-600, 2018.
e Ifd, =rm/nand f(r) =r+ k (mod n) for all 1 < r < n then Meas¢(0) = Xp is
the unique cyclically symmetric point of Grso(k, n).
@ This implies the above formulas for regular polygons in the Ising and electrical
cases.



Thanks!
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